Blog
The latest from Google Research
VisualRank
Thursday, May 1, 2008
Posted by Shumeet Baluja and Yushi Jing
At WWW-2008, in Beijing, China, we presented our paper "
PageRank for Product Image Search
". In this paper, we presented a system that used visual cues, instead of solely text information, to determine the rank of images. The idea was simple: find common visual themes in a set of images, and then find a small set of images that best represented those themes. The resulting algorithm wound up being PageRank, but on an entirely inferred graph of image similarities. Since the release of the paper, we've noticed lots of
coverage
in the press and have received quite a few questions. We thought we could answer a few of them here.
"Why did we choose to use products for our test case?"
First and foremost, product queries are popular in actual usage; addressing them is important. Second, users have strong expectations of what results we should return for these queries; therefore, this category provides an important set of examples that we need to address especially carefully. Third, on a pragmatic note, they lend themselves well to the type of "image features" that we selected in this study. Since the publication of the paper, we've also extended our results to other query types, including travel-related queries. One of the nice features of the approach is that (we hope) it will be easy to extend to new domains; as research in measuring image or object similarity continues, the advances can easily be incorporated into the similarity calculation to compute the underlying graph; the computations on the graph do not change.
"Where are we going from here?"
Besides broadening the sets of queries (and sets of features) for which we can use this approach, there are three directions we're exploring. First, estimating similarity measures for all of the images on the web is computationally expensive; approximations or alternative computations are needed. Second, we hope to evaluate our approach with respect to the large number of recently proposed alternative clustering methods. Third, many variations of PageRank can be used in quite interesting ways for image search. For example, we can use some of these previously published methods to reintroduce, in a meaningful manner, the textual information that the VisualRank algorithm removed. In the end, we have an approach that has an easy integration with both text and visual clues. Stay tuned for more on that in the coming months.
And now to answer the most commonly asked question,
"Is it live?"
Not yet. Currently, it is research in progress (
click here to help speed up the process
). In the meantime, though, if you'd like another sneak peek of our research on large graphs, this time in the context of YouTube datamining,
just follow the link
.
Finally, we want to extend our deepest thanks to the people who helped on this project, especially the image-search team; without their help, this research would not have been possible.
Labels
accessibility
ACL
ACM
Acoustic Modeling
Adaptive Data Analysis
ads
adsense
adwords
Africa
AI
AI for Social Good
Algorithms
Android
Android Wear
API
App Engine
App Inventor
April Fools
Art
Audio
Augmented Reality
Australia
Automatic Speech Recognition
AutoML
Awards
BigQuery
Cantonese
Chemistry
China
Chrome
Cloud Computing
Collaboration
Compression
Computational Imaging
Computational Photography
Computer Science
Computer Vision
conference
conferences
Conservation
correlate
Course Builder
crowd-sourcing
CVPR
Data Center
Data Discovery
data science
datasets
Deep Learning
DeepDream
DeepMind
distributed systems
Diversity
Earth Engine
economics
Education
Electronic Commerce and Algorithms
electronics
EMEA
EMNLP
Encryption
entities
Entity Salience
Environment
Europe
Exacycle
Expander
Faculty Institute
Faculty Summit
Flu Trends
Fusion Tables
gamification
Gboard
Gmail
Google Accelerated Science
Google Books
Google Brain
Google Cloud Platform
Google Docs
Google Drive
Google Genomics
Google Maps
Google Photos
Google Play Apps
Google Science Fair
Google Sheets
Google Translate
Google Trips
Google Voice Search
Google+
Government
grants
Graph
Graph Mining
Hardware
HCI
Health
High Dynamic Range Imaging
ICCV
ICLR
ICML
ICSE
Image Annotation
Image Classification
Image Processing
Inbox
India
Information Retrieval
internationalization
Internet of Things
Interspeech
IPython
Journalism
jsm
jsm2011
K-12
Kaggle
KDD
Keyboard Input
Klingon
Korean
Labs
Linear Optimization
localization
Low-Light Photography
Machine Hearing
Machine Intelligence
Machine Learning
Machine Perception
Machine Translation
Magenta
MapReduce
market algorithms
Market Research
materials science
Mixed Reality
ML
ML Fairness
MOOC
Moore's Law
Multimodal Learning
NAACL
Natural Language Processing
Natural Language Understanding
Network Management
Networks
Neural Networks
NeurIPS
Nexus
Ngram
NIPS
NLP
On-device Learning
open source
operating systems
Optical Character Recognition
optimization
osdi
osdi10
patents
Peer Review
ph.d. fellowship
PhD Fellowship
PhotoScan
Physics
PiLab
Pixel
Policy
Professional Development
Proposals
Public Data Explorer
publication
Publications
Quantum AI
Quantum Computing
Recommender Systems
Reinforcement Learning
renewable energy
Research
Research Awards
resource optimization
Responsible AI
Robotics
schema.org
Search
search ads
Security and Privacy
Self-Supervised Learning
Semantic Models
Semi-supervised Learning
SIGCOMM
SIGMOD
Site Reliability Engineering
Social Networks
Software
Sound Search
Speech
Speech Recognition
statistics
Structured Data
Style Transfer
Supervised Learning
Systems
TensorBoard
TensorFlow
TPU
Translate
trends
TTS
TV
UI
University Relations
UNIX
Unsupervised Learning
User Experience
video
Video Analysis
Virtual Reality
Vision Research
Visiting Faculty
Visualization
VLDB
Voice Search
Wiki
wikipedia
WWW
Year in Review
YouTube
Archive
2022
Jun
May
Apr
Mar
Feb
Jan
2021
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2020
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2019
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2018
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2017
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2016
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2015
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2014
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2013
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2012
Dec
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2011
Dec
Nov
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2010
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2009
Dec
Nov
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2008
Dec
Nov
Oct
Sep
Jul
May
Apr
Mar
Feb
2007
Oct
Sep
Aug
Jul
Jun
Feb
2006
Dec
Nov
Sep
Aug
Jul
Jun
Apr
Mar
Feb
Feed
Follow @googleai
Give us feedback in our
Product Forums
.