Blog
The latest from Google Research
Google launches Korean Voice Search
miércoles, 30 de junio de 2010
Posted by Mike Schuster & Martin Jansche, Google Research
On June 16th, we launched our
Korean voice search system
. Google Search by Voice has been available in various flavors of
English
since 2008, in
Mandarin
and
Japanese
since 2009, and in
French, Italian, German and Spanish
just a few weeks ago (some more details in a recent blog
post
).
Korean speech recognition has received less attention than English, which has been studied extensively around the world by teams in both English and non-English speaking countries. Fundamentally, our methodology for developing a Korean speech recognition system is similar to the process we have used for other languages. We created a set of statistical models: an acoustic model for the basic sounds of the language, a language model for the words and phrases of the language, and a dictionary mapping the words to their pronunciations. We trained our acoustic model using a large quantity of recorded and transcribed Korean speech. The language model was trained using anonymized Korean web search queries. Once these models were trained, given an audio input, we can compute and display the most likely spoken phrase, along with its search result.
There were several challenges in developing a Korean speech recognition system, some unique to Korean, some typical of Asian languages and some universal to all languages. Here are some examples of problems that stood out:
Developing a Korean dictionary: Unlike English, where there are many publicly-available dictionaries for mapping words to their pronunciations, there are very few available for Korean. Since our Korean recognizer knows several hundred thousand words, we needed to create these mappings ourselves. Luckily, Korean has one of the most elegant and simple writing systems in the world (created in the 15th century!) and this makes mapping Korean words to pronunciations relatively straightforward. However, we found that Koreans also use quite a few English words in their queries, which complicates the mapping process. To predict these pronunciations, we built a statistical model using data from an existing (smaller) Korean dictionary.
Korean word boundaries: Although Korean orthography uses spaces to indicate word boundaries (unlike Japanese or Mandarin), we found that people use word boundaries inconsistently for search queries. To limit the size of the vocabulary generated from the search queries, we used statistical techniques to cut rare long words into smaller sub-words (similarly to the system we developed for Japanese).
Pronunciation exceptions: Korean (like all other languages) has many exceptions for pronunciations that are not immediately obvious. For example, numbers are often written as digit sequences but not necessarily spoken this way (2010 = 이천십). The same is true for many common alphanumeric sequences like “mp3”, “kbs2” or mixed queries like “삼성 tv”, which often contain spelled letters and possibly English spoken digits as opposed to Korean ones.
Encoding issues: Korean script (Hangul) is written in syllabic blocks, with each block containing at least two of the 24 modern Hangul letters (Jamo), at least one consonant and one vowel. Including the normal ASCII characters this brings the total number of possible basic characters to over 10000, not including Hanja (used mostly in the formal spelling of names). So, despite its simple writing system, Korean still presents the same challenge of handling a large alphabet that is typical of Asian languages.
Script ambiguity: We found that some users like to use English native words and others the Korean transliteration (example: “ncis season 6” vs. “ncis 시즌6”). This makes it challenging to train and evaluate the system. We use a metric that estimates whether our transcription will give the correct web page result on the user’s smart phone screen, and such script variations make this tricky.
Recognizing rare words: The recognizer is good at recognizing things users often type into the search engine, such as cities, shops, addresses, common abbreviations, common product model numbers and well-known names like “김연아”. However, rare words (like many personal names) are often harder for us to recognize. We continue to work on improving those.
Every speaker sounds different: People speak in different styles, slow or fast, with an accent or without, have lower or higher pitched voices, etc. To make our system work for all these different conditions, we trained our system using data from many different sources to capture as many conditions as possible.
When speech recognizers make errors, the reason is usually that the models are not good enough, and that often means they haven’t been trained on enough data. For Korean (and all other languages) our cloud computing infrastructure allows us to retrain our models frequently and using an ever growing amount of data to continually improve performance. Over time, we are committed to improve the system regularly to make speech a user-friendly input method on mobile devices.
Etiquetas
accessibility
ACL
ACM
Acoustic Modeling
Adaptive Data Analysis
ads
adsense
adwords
Africa
AI
AI for Social Good
Algorithms
Android
Android Wear
API
App Engine
App Inventor
April Fools
Art
Audio
Augmented Reality
Australia
Automatic Speech Recognition
AutoML
Awards
BigQuery
Cantonese
Chemistry
China
Chrome
Cloud Computing
Collaboration
Compression
Computational Imaging
Computational Photography
Computer Science
Computer Vision
conference
conferences
Conservation
correlate
Course Builder
crowd-sourcing
CVPR
Data Center
Data Discovery
data science
datasets
Deep Learning
DeepDream
DeepMind
distributed systems
Diversity
Earth Engine
economics
Education
Electronic Commerce and Algorithms
electronics
EMEA
EMNLP
Encryption
entities
Entity Salience
Environment
Europe
Exacycle
Expander
Faculty Institute
Faculty Summit
Flu Trends
Fusion Tables
gamification
Gboard
Gmail
Google Accelerated Science
Google Books
Google Brain
Google Cloud Platform
Google Docs
Google Drive
Google Genomics
Google Maps
Google Photos
Google Play Apps
Google Science Fair
Google Sheets
Google Translate
Google Trips
Google Voice Search
Google+
Government
grants
Graph
Graph Mining
Hardware
HCI
Health
High Dynamic Range Imaging
ICCV
ICLR
ICML
ICSE
Image Annotation
Image Classification
Image Processing
Inbox
India
Information Retrieval
internationalization
Internet of Things
Interspeech
IPython
Journalism
jsm
jsm2011
K-12
Kaggle
KDD
Keyboard Input
Klingon
Korean
Labs
Linear Optimization
localization
Low-Light Photography
Machine Hearing
Machine Intelligence
Machine Learning
Machine Perception
Machine Translation
Magenta
MapReduce
market algorithms
Market Research
materials science
Mixed Reality
ML
ML Fairness
MOOC
Moore's Law
Multimodal Learning
NAACL
Natural Language Processing
Natural Language Understanding
Network Management
Networks
Neural Networks
NeurIPS
Nexus
Ngram
NIPS
NLP
On-device Learning
open source
operating systems
Optical Character Recognition
optimization
osdi
osdi10
patents
Peer Review
ph.d. fellowship
PhD Fellowship
PhotoScan
Physics
PiLab
Pixel
Policy
Professional Development
Proposals
Public Data Explorer
publication
Publications
Quantum AI
Quantum Computing
Recommender Systems
Reinforcement Learning
renewable energy
Research
Research Awards
resource optimization
Responsible AI
Robotics
schema.org
Search
search ads
Security and Privacy
Self-Supervised Learning
Semantic Models
Semi-supervised Learning
SIGCOMM
SIGMOD
Site Reliability Engineering
Social Networks
Software
Sound Search
Speech
Speech Recognition
statistics
Structured Data
Style Transfer
Supervised Learning
Systems
TensorBoard
TensorFlow
TPU
Translate
trends
TTS
TV
UI
University Relations
UNIX
Unsupervised Learning
User Experience
video
Video Analysis
Virtual Reality
Vision Research
Visiting Faculty
Visualization
VLDB
Voice Search
Wiki
wikipedia
WWW
Year in Review
YouTube
Archive
2022
may
abr
mar
feb
ene
2021
dic
nov
oct
sep
ago
jul
jun
may
abr
mar
feb
ene
2020
dic
nov
oct
sep
ago
jul
jun
may
abr
mar
feb
ene
2019
dic
nov
oct
sep
ago
jul
jun
may
abr
mar
feb
ene
2018
dic
nov
oct
sep
ago
jul
jun
may
abr
mar
feb
ene
2017
dic
nov
oct
sep
ago
jul
jun
may
abr
mar
feb
ene
2016
dic
nov
oct
sep
ago
jul
jun
may
abr
mar
feb
ene
2015
dic
nov
oct
sep
ago
jul
jun
may
abr
mar
feb
ene
2014
dic
nov
oct
sep
ago
jul
jun
may
abr
mar
feb
ene
2013
dic
nov
oct
sep
ago
jul
jun
may
abr
mar
feb
ene
2012
dic
oct
sep
ago
jul
jun
may
abr
mar
feb
ene
2011
dic
nov
sep
ago
jul
jun
may
abr
mar
feb
ene
2010
dic
nov
oct
sep
ago
jul
jun
may
abr
mar
feb
ene
2009
dic
nov
ago
jul
jun
may
abr
mar
feb
ene
2008
dic
nov
oct
sep
jul
may
abr
mar
feb
2007
oct
sep
ago
jul
jun
feb
2006
dic
nov
sep
ago
jul
jun
abr
mar
feb
Feed
Follow @googleai
Give us feedback in our
Product Forums
.