Blog
The latest from Google Research
Google Americas Faculty Summit Day 2: Shopping, Coupons and Data
lunes, 18 de julio de 2011
Posted by Andrew W. Moore, Director, Google Commerce and Site Director, Pittsburgh
On July 14 and 15, we held our seventh annual Faculty Summit for the Americas with our New York City offices hosting for the first time. Over the next few days, we will be bringing you a series of blog posts dedicated to sharing the Summit's events, topics and speakers. --Ed
Google is ramping up its commitment to making shopping and commerce fun, convenient and useful. As a computer scientist with a background in algorithms and large scale artificial intelligence, what's most interesting to me is the breadth of fundamental new technologies needed in this area. They range from the computer vision technology that recognizes fashion styles and visually similar items of clothing, to a deep understanding of (potentially) all goods for sale in the world, to new and convenient payments technologies, to the intelligence that can be brought to the mobile shopping experience, to the infrastructure needed to make these technologies work on a global scale.
At the Faculty Summit this week, I took the opportunity to engage faculty in some of the fascinating research questions that we are working on within Google Commerce. For example, consider the processing flow required to present a user with an appropriate set of shoes from which to choose, given the input of an image of a high heel shoe. First, we need to segment or identify the object of interest in the input image. If the input is an image of a high heel with the Alps in the background, we don’t want to find images of different types of shoes with the Alps in the background, we want images of high heels.
The second step is to extract the object’s “visual signature” and build an index using color, shape, pattern and metadata. Then, a search is performed using a variety of similarity measures. The implementation of this processing flow raises several research challenges. For example, the calculations required to determine similar shoes could be slow due to the number of factors that must be considered. Segmentation can also pose a difficult problem because of the complexity of the feature extraction algorithms.
Another important consideration is personalization. Consumers want items that correspond to their interests, so we should include results based on historical search and shopping data for a particular person (who has opted-in to such features). More importantly, we want to downweight styles that the shopper has indicated he does not like. Finally, we also need to include some creative items to simulate the serendipitous connections one makes when shopping in a store. This is a new kind of search experience, which requires a new kind of architecture and new ways to infer shopper satisfaction. As a result, we find ourselves exploring new kinds of statistical models and the underlying infrastructure to support them.
Etiquetas
accessibility
ACL
ACM
Acoustic Modeling
Adaptive Data Analysis
ads
adsense
adwords
Africa
AI
AI for Social Good
Algorithms
Android
Android Wear
API
App Engine
App Inventor
April Fools
Art
Audio
Augmented Reality
Australia
Automatic Speech Recognition
AutoML
Awards
BigQuery
Cantonese
Chemistry
China
Chrome
Cloud Computing
Collaboration
Compression
Computational Imaging
Computational Photography
Computer Science
Computer Vision
conference
conferences
Conservation
correlate
Course Builder
crowd-sourcing
CVPR
Data Center
Data Discovery
data science
datasets
Deep Learning
DeepDream
DeepMind
distributed systems
Diversity
Earth Engine
economics
Education
Electronic Commerce and Algorithms
electronics
EMEA
EMNLP
Encryption
entities
Entity Salience
Environment
Europe
Exacycle
Expander
Faculty Institute
Faculty Summit
Flu Trends
Fusion Tables
gamification
Gboard
Gmail
Google Accelerated Science
Google Books
Google Brain
Google Cloud Platform
Google Docs
Google Drive
Google Genomics
Google Maps
Google Photos
Google Play Apps
Google Science Fair
Google Sheets
Google Translate
Google Trips
Google Voice Search
Google+
Government
grants
Graph
Graph Mining
Hardware
HCI
Health
High Dynamic Range Imaging
ICCV
ICLR
ICML
ICSE
Image Annotation
Image Classification
Image Processing
Inbox
India
Information Retrieval
internationalization
Internet of Things
Interspeech
IPython
Journalism
jsm
jsm2011
K-12
Kaggle
KDD
Keyboard Input
Klingon
Korean
Labs
Linear Optimization
localization
Low-Light Photography
Machine Hearing
Machine Intelligence
Machine Learning
Machine Perception
Machine Translation
Magenta
MapReduce
market algorithms
Market Research
materials science
Mixed Reality
ML
ML Fairness
MOOC
Moore's Law
Multimodal Learning
NAACL
Natural Language Processing
Natural Language Understanding
Network Management
Networks
Neural Networks
NeurIPS
Nexus
Ngram
NIPS
NLP
On-device Learning
open source
operating systems
Optical Character Recognition
optimization
osdi
osdi10
patents
Peer Review
ph.d. fellowship
PhD Fellowship
PhotoScan
Physics
PiLab
Pixel
Policy
Professional Development
Proposals
Public Data Explorer
publication
Publications
Quantum AI
Quantum Computing
Recommender Systems
Reinforcement Learning
renewable energy
Research
Research Awards
resource optimization
Responsible AI
Robotics
schema.org
Search
search ads
Security and Privacy
Self-Supervised Learning
Semantic Models
Semi-supervised Learning
SIGCOMM
SIGMOD
Site Reliability Engineering
Social Networks
Software
Sound Search
Speech
Speech Recognition
statistics
Structured Data
Style Transfer
Supervised Learning
Systems
TensorBoard
TensorFlow
TPU
Translate
trends
TTS
TV
UI
University Relations
UNIX
Unsupervised Learning
User Experience
video
Video Analysis
Virtual Reality
Vision Research
Visiting Faculty
Visualization
VLDB
Voice Search
Wiki
wikipedia
WWW
Year in Review
YouTube
Archive
2022
may
abr
mar
feb
ene
2021
dic
nov
oct
sep
ago
jul
jun
may
abr
mar
feb
ene
2020
dic
nov
oct
sep
ago
jul
jun
may
abr
mar
feb
ene
2019
dic
nov
oct
sep
ago
jul
jun
may
abr
mar
feb
ene
2018
dic
nov
oct
sep
ago
jul
jun
may
abr
mar
feb
ene
2017
dic
nov
oct
sep
ago
jul
jun
may
abr
mar
feb
ene
2016
dic
nov
oct
sep
ago
jul
jun
may
abr
mar
feb
ene
2015
dic
nov
oct
sep
ago
jul
jun
may
abr
mar
feb
ene
2014
dic
nov
oct
sep
ago
jul
jun
may
abr
mar
feb
ene
2013
dic
nov
oct
sep
ago
jul
jun
may
abr
mar
feb
ene
2012
dic
oct
sep
ago
jul
jun
may
abr
mar
feb
ene
2011
dic
nov
sep
ago
jul
jun
may
abr
mar
feb
ene
2010
dic
nov
oct
sep
ago
jul
jun
may
abr
mar
feb
ene
2009
dic
nov
ago
jul
jun
may
abr
mar
feb
ene
2008
dic
nov
oct
sep
jul
may
abr
mar
feb
2007
oct
sep
ago
jul
jun
feb
2006
dic
nov
sep
ago
jul
jun
abr
mar
feb
Feed
Follow @googleai
Give us feedback in our
Product Forums
.