Blog
The latest from Google Research
Conference Report: Workshop on Internet and Network Economics (WINE) 2012
miércoles, 19 de diciembre de 2012
Posted by Vahab Mirrokni, Research Scientist, Google Research New York
Google regularly participates in the
WINE
conference: Workshop on Internet & Network Economics. WINE’12 just happened last week in Liverpool, UK, where there is a strong
economics and computation group
. WINE provides a forum for researchers across various disciplines to examine interesting algorithmic and economic problems of mutual interest that have emerged from the Internet over the past decade. For Google, the exchange of ideas at this selective workshop has resulted in innovation and improvements in algorithms and economic auctions, such as our display ad allocation.
Googlers co-authored three papers this year; here’s a synopsis of each, as well as some highlights from invited talks at the conference:
Budget Optimization for Online Campaigns with Positive Carryover Effects
This paper first argues that ad impressions may have some long-term impact on user behaviour, and refers to an older
WWW ’10 paper
. Based on this motivation, the paper presents a scalable budget optimization algorithm for online advertising campaigns in the presence of Markov user behavior. In such settings, showing an ad to a user may change their actions in the future through a Markov model, and the probability of conversion for the ad does not only depend on the last ad shown, but also on earlier user activities. The main purpose of the paper is to give a simpler algorithm to solve a constrained Markov Decision Process, and confirms this easier solution via simulations on some advertising data sets. The paper was written when Nikolay Archak, a PhD student at NYU business school, was an intern with the New York market algorithms research team.
On Fixed-Price Marketing for Goods with Positive Network Externalities
This paper presents an approximation algorithm for marketing “networked goods” and services that exhibit positive network externalities - for example, is the buyer's value for the goods or service influenced positively by other buyers owning the goods or using the service? Such positive network externalities arise in many products like operating systems or smartphone services. While most of previous research is concerned with influence maximization, this paper attempts to identify a revenue maximizing marketing strategy for such networked goods, as follows: The seller selects a set (S) of buyers and gives them the goods for free, then sets a fixed per-unit price (p), at which other consumers can buy the item. The strategy is consistent with practice and is easy to implement. The authors use ideas from non-negative submodular maximization to find the optimal revenue maximizing fixed-price marketing strategy.
The AND-OR game: Equilibrium Characterization
Yishay Mansour, former Visiting Faculty in Google New York, presented the results; he first argued that the existence and uniqueness of market equilibria is only known for markets with divisible goods and concave or convex utilities. Then he described a simple market AND-OR game for divisible goods. To my surprise, he showed a class of mixed strategies are basically the unique set of randomized equilibria for this market (up to minor changes in the outcome). At the end, Yishay challenged the audience to give such characterization for more general markets with indivisible goods.
Kamal Jain of Ebay Research gave an interesting talk about mechanism design problems, inspired by application in companies like Ebay and Google. In one part, Kamal proposed "
coopetitive ad auctions
" for settings in which the auctioneer runs an auction among buyers who may cooperate with some advertisers, and at the same time compete with others for sealing advertising slots. He gave context around "product ads"; for example, a retailer like Best Buy may cooperate with a manufacturer like HP to put out a product ad for an HP computer sold at Best Buy. Kamal argued that if the cooperation is not an explicit part of the auction, an advertiser may implicitly end up competing with itself, thus decreasing the social welfare. By making the cooperation an explicit part of the auction, he was able to design a mechanism with better social welfare and revenue properties, compared to both first-price and second-price auctions. Kamal also discussed optimal mechanisms for intermediaries, and “surplus auctions” to avoid cyclic bidding behavior resulted from running naive variants of first-price auctions in repeated settings.
David Parkes of Harvard University discussed techniques to combine mechanism design with machine learning or heuristic search algorithms. At one point David discussed how to implement a
branch-and-bound search algorithm
in a way that results in a "monotone" allocation rule, so that if we implement a VCG-type allocation and pricing rule based on this allocation algorithm, the resulting mechanism becomes truthful. David also presented ways to compute a set of prices for any allocation, respecting incentive compatibility constraints as much as possible. Both of these topics appeared in ACM EC 2012 papers that he had co-authored.
At the business meeting, there was a proposal to change the title of the conference from “workshop” to “conference” or “symposium” to reflect its fully peer-reviewed and archival nature, keeping the same acronym of WINE. (Changing the title to “Symposium on the Web, Internet, and Network Economics” was rejected: SWINE!) WINE 2013 will be held at Harvard University in Boston, MA, and we look forward to reconnecting with fellow researchers in the field and continuing to nurture new developments and research topics.
Etiquetas
accessibility
ACL
ACM
Acoustic Modeling
Adaptive Data Analysis
ads
adsense
adwords
Africa
AI
AI for Social Good
Algorithms
Android
Android Wear
API
App Engine
App Inventor
April Fools
Art
Audio
Augmented Reality
Australia
Automatic Speech Recognition
AutoML
Awards
BigQuery
Cantonese
Chemistry
China
Chrome
Cloud Computing
Collaboration
Compression
Computational Imaging
Computational Photography
Computer Science
Computer Vision
conference
conferences
Conservation
correlate
Course Builder
crowd-sourcing
CVPR
Data Center
Data Discovery
data science
datasets
Deep Learning
DeepDream
DeepMind
distributed systems
Diversity
Earth Engine
economics
Education
Electronic Commerce and Algorithms
electronics
EMEA
EMNLP
Encryption
entities
Entity Salience
Environment
Europe
Exacycle
Expander
Faculty Institute
Faculty Summit
Flu Trends
Fusion Tables
gamification
Gboard
Gmail
Google Accelerated Science
Google Books
Google Brain
Google Cloud Platform
Google Docs
Google Drive
Google Genomics
Google Maps
Google Photos
Google Play Apps
Google Science Fair
Google Sheets
Google Translate
Google Trips
Google Voice Search
Google+
Government
grants
Graph
Graph Mining
Hardware
HCI
Health
High Dynamic Range Imaging
ICCV
ICLR
ICML
ICSE
Image Annotation
Image Classification
Image Processing
Inbox
India
Information Retrieval
internationalization
Internet of Things
Interspeech
IPython
Journalism
jsm
jsm2011
K-12
Kaggle
KDD
Keyboard Input
Klingon
Korean
Labs
Linear Optimization
localization
Low-Light Photography
Machine Hearing
Machine Intelligence
Machine Learning
Machine Perception
Machine Translation
Magenta
MapReduce
market algorithms
Market Research
materials science
Mixed Reality
ML
ML Fairness
MOOC
Moore's Law
Multimodal Learning
NAACL
Natural Language Processing
Natural Language Understanding
Network Management
Networks
Neural Networks
NeurIPS
Nexus
Ngram
NIPS
NLP
On-device Learning
open source
operating systems
Optical Character Recognition
optimization
osdi
osdi10
patents
Peer Review
ph.d. fellowship
PhD Fellowship
PhotoScan
Physics
PiLab
Pixel
Policy
Professional Development
Proposals
Public Data Explorer
publication
Publications
Quantum AI
Quantum Computing
Recommender Systems
Reinforcement Learning
renewable energy
Research
Research Awards
resource optimization
Responsible AI
Robotics
schema.org
Search
search ads
Security and Privacy
Self-Supervised Learning
Semantic Models
Semi-supervised Learning
SIGCOMM
SIGMOD
Site Reliability Engineering
Social Networks
Software
Sound Search
Speech
Speech Recognition
statistics
Structured Data
Style Transfer
Supervised Learning
Systems
TensorBoard
TensorFlow
TPU
Translate
trends
TTS
TV
UI
University Relations
UNIX
Unsupervised Learning
User Experience
video
Video Analysis
Virtual Reality
Vision Research
Visiting Faculty
Visualization
VLDB
Voice Search
Wiki
wikipedia
WWW
Year in Review
YouTube
Archive
2022
may
abr
mar
feb
ene
2021
dic
nov
oct
sep
ago
jul
jun
may
abr
mar
feb
ene
2020
dic
nov
oct
sep
ago
jul
jun
may
abr
mar
feb
ene
2019
dic
nov
oct
sep
ago
jul
jun
may
abr
mar
feb
ene
2018
dic
nov
oct
sep
ago
jul
jun
may
abr
mar
feb
ene
2017
dic
nov
oct
sep
ago
jul
jun
may
abr
mar
feb
ene
2016
dic
nov
oct
sep
ago
jul
jun
may
abr
mar
feb
ene
2015
dic
nov
oct
sep
ago
jul
jun
may
abr
mar
feb
ene
2014
dic
nov
oct
sep
ago
jul
jun
may
abr
mar
feb
ene
2013
dic
nov
oct
sep
ago
jul
jun
may
abr
mar
feb
ene
2012
dic
oct
sep
ago
jul
jun
may
abr
mar
feb
ene
2011
dic
nov
sep
ago
jul
jun
may
abr
mar
feb
ene
2010
dic
nov
oct
sep
ago
jul
jun
may
abr
mar
feb
ene
2009
dic
nov
ago
jul
jun
may
abr
mar
feb
ene
2008
dic
nov
oct
sep
jul
may
abr
mar
feb
2007
oct
sep
ago
jul
jun
feb
2006
dic
nov
sep
ago
jul
jun
abr
mar
feb
Feed
Follow @googleai
Give us feedback in our
Product Forums
.