Blog
The latest from Google Research
Research Projects on Google App Engine
Tuesday, February 12, 2013
By Andrea Held, Program Manager, Google University Relations
Cross-posted on the
Google Developers Blog
Last spring Google University Relations
announced
an open call for proposals for
Google App Engine Research Awards
. We invited academic researchers to use
Google App Engine
for research experiments and analysis, encouraging them to take advantage of the platform’s ability to manage heavy data loads and run large-scale applications. Submissions included exciting proposals in various subject areas from mathematics, computer vision, bioinformatics, climate and computer science. We have selected seven projects that have the potential to impact people’s lives by making community seismic networks affordable, creating individualized DNA profiles, collecting useful local data through social media, and by understanding global climate trends, just to mention a few.
We have donated $60,000 in Google App Engine credits to each of these projects recognizing the innovation and vision of the Principal Investigator and his collaborators. Congratulations to all of them!
Below is a brief introduction of the award recipients and their research. We look forward to learning about their progress and will share the news right here. Stay tuned!
K. Mani Chandy
, Simon Ramo Professor and Professor of Computer Science, California Institute of Technology
Project title
: Cloud-based Event Detection for Sense and Response
Description and research goals
: We developed an App Engine-based sense and response platform for the
Community Seismic Network (CSN) project
. CSN's goals include measuring seismic events with finer spatial resolution than previously possible and developing a low-cost alternative to traditional seismic networks, which have high capital costs for acquisition, deployment, and ongoing maintenance. We are working on generalizing our implementation and experience to provide a system for other members of the community to use in future sense and response applications.
Lawrence Chung
, Associate Professor, The University of Texas at Dallas
Project title
: Google App Engine:
Software Benchmark and Simulation Forecaster
Description and research goals
: An important consideration before migrating a company’s application software to Google App Engine is performance and operating cost.
Similarly, the Google App Engine organization would want to estimate Google App Engine’s resource usage and how well the particular resource allocation will meet the performance and cost requirements, as in the service level agreements (SLAs). This research project aims to develop a Google App Engine simulation forecaster - a tool for estimating the performance and cost of software operating on Google App Engine, and produce some important operational benchmark.
Julian Gough
, Professor, University of Bristol, UK
Project title
: Personalised DNA Analysis
Description and research goals
: Personal genomics is still in its infancy and although it is easy, and relatively cheap to obtain personal genotype data, the available analysis is not personalised; it is the same for everybody. In this project we will set up a service powered by App Engine that provides personal DNA analysis specific to each individual. The proposed service does not focus on disease, but on identifying aspects of a healthy person that make them unique. What does your genome tell you about yourself that makes you special?
Ramesh Raskar
, PhD, MIT Media Lab; Dr.
Erick Baptista Passos
, IFPI (Federal Institute of Technology, Brazil)
Project title
: Vision Blocks
Description and research goals
: Vision Blocks is a research project that aims to make computer vision available to everyone. Its primary goal is to develop tools for delivering computer vision to masses through an extensible visual programming language and an online application building and sharing system. We have a
prototype
HTML5 client that already performs computer vision tasks locally. Our goals for the next iterations include integration with App Engine for preprocessing of video streaming platforms.
Norman Sadeh
, Professor, Director of Mobile Commerce Lab, School of
Computer Science, Carnegie Mellon University; Justin Cranshaw, PhD student, School of Computer Science, Hazim Almuhimedi, PhD student, School of Computer Science
Project title
: Mapping the Dynamics of a City & Nudging Twitter Users
Description and research goals
: We are working on two research
projects. The first is
Livehoods
in which we take a computational approach to analyzing large-scale trends in the ways people move through dense urban areas. Our goal is to find algorithmic ways of uncovering local collective knowledge about the city using social media. The second is “Nudging Twitter Users” in which we utilize quantitative and qualitative approaches to understand why people post things on Twitter they wish they had not, and also to understand the nature of these posts. Our objective is to develop tools that help nudge users to reduce the likelihood of those posts.
William Stein
, Professor of Mathematics, University of Washington
Project title
: Sage: Creating a Viable Free Open Source Alternative to Magma, Maple, Matlab, and Mathematica
Description and research goals
: The goal is to create a highly scalable and resilient website through which very large numbers of people can use
Sage
. This is the
next step
.
Enrique Vivoni
, Associate Professor,
Hydrologic Science, Engineering & Sustainability
, Arizona State University; Dr. Giuseppe Mascaro, Research Engineer; Jyothi Marupila, Graduate Student; Mario A. Rodriguez, Software Engineer
Project title
: Cloud Computing-Based Visualization and Access of Global Climate Data Sets
Description and research goals
: Our project uses Google App Engine for analyzing global climate data within the Google Maps API. At this stage, we are able to generate loads from the Global Land Data Assimilation Systems (GLDAS) climate model into the Google App Engine datastore. We select the climate variable to be used and aggregate data at different spatial resolutions. We are using Google App Engine Task Queue API to load large files. For the presentation layer, we are using Django templates to integrate the display of many data points in the Google Maps API. Our objective is to provide scientific data on global climate trends by allowing map-based queries and summaries at the appropriate resolutions.
Sample Map
Currently, no further rounds for Google App Engine Research Awards have been planned. We will announce any updates to the program on our
website
.
Labels
accessibility
ACL
ACM
Acoustic Modeling
Adaptive Data Analysis
ads
adsense
adwords
Africa
AI
AI for Social Good
Algorithms
Android
Android Wear
API
App Engine
App Inventor
April Fools
Art
Audio
Augmented Reality
Australia
Automatic Speech Recognition
AutoML
Awards
BigQuery
Cantonese
Chemistry
China
Chrome
Cloud Computing
Collaboration
Compression
Computational Imaging
Computational Photography
Computer Science
Computer Vision
conference
conferences
Conservation
correlate
Course Builder
crowd-sourcing
CVPR
Data Center
Data Discovery
data science
datasets
Deep Learning
DeepDream
DeepMind
distributed systems
Diversity
Earth Engine
economics
Education
Electronic Commerce and Algorithms
electronics
EMEA
EMNLP
Encryption
entities
Entity Salience
Environment
Europe
Exacycle
Expander
Faculty Institute
Faculty Summit
Flu Trends
Fusion Tables
gamification
Gboard
Gmail
Google Accelerated Science
Google Books
Google Brain
Google Cloud Platform
Google Docs
Google Drive
Google Genomics
Google Maps
Google Photos
Google Play Apps
Google Science Fair
Google Sheets
Google Translate
Google Trips
Google Voice Search
Google+
Government
grants
Graph
Graph Mining
Hardware
HCI
Health
High Dynamic Range Imaging
ICCV
ICLR
ICML
ICSE
Image Annotation
Image Classification
Image Processing
Inbox
India
Information Retrieval
internationalization
Internet of Things
Interspeech
IPython
Journalism
jsm
jsm2011
K-12
Kaggle
KDD
Keyboard Input
Klingon
Korean
Labs
Linear Optimization
localization
Low-Light Photography
Machine Hearing
Machine Intelligence
Machine Learning
Machine Perception
Machine Translation
Magenta
MapReduce
market algorithms
Market Research
materials science
Mixed Reality
ML
ML Fairness
MOOC
Moore's Law
Multimodal Learning
NAACL
Natural Language Processing
Natural Language Understanding
Network Management
Networks
Neural Networks
NeurIPS
Nexus
Ngram
NIPS
NLP
On-device Learning
open source
operating systems
Optical Character Recognition
optimization
osdi
osdi10
patents
Peer Review
ph.d. fellowship
PhD Fellowship
PhotoScan
Physics
PiLab
Pixel
Policy
Professional Development
Proposals
Public Data Explorer
publication
Publications
Quantum AI
Quantum Computing
Recommender Systems
Reinforcement Learning
renewable energy
Research
Research Awards
resource optimization
Responsible AI
Robotics
schema.org
Search
search ads
Security and Privacy
Self-Supervised Learning
Semantic Models
Semi-supervised Learning
SIGCOMM
SIGMOD
Site Reliability Engineering
Social Networks
Software
Sound Search
Speech
Speech Recognition
statistics
Structured Data
Style Transfer
Supervised Learning
Systems
TensorBoard
TensorFlow
TPU
Translate
trends
TTS
TV
UI
University Relations
UNIX
Unsupervised Learning
User Experience
video
Video Analysis
Virtual Reality
Vision Research
Visiting Faculty
Visualization
VLDB
Voice Search
Wiki
wikipedia
WWW
Year in Review
YouTube
Archive
2022
May
Apr
Mar
Feb
Jan
2021
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2020
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2019
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2018
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2017
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2016
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2015
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2014
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2013
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2012
Dec
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2011
Dec
Nov
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2010
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2009
Dec
Nov
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2008
Dec
Nov
Oct
Sep
Jul
May
Apr
Mar
Feb
2007
Oct
Sep
Aug
Jul
Jun
Feb
2006
Dec
Nov
Sep
Aug
Jul
Jun
Apr
Mar
Feb
Feed
Follow @googleai
Give us feedback in our
Product Forums
.