Blog
The latest from Google Research
Distributing the Edit History of Wikipedia Infoboxes
Thursday, May 30, 2013
Posted by Enrique Alfonseca, Google Research
Aside from its value as a general-purpose encyclopedia, Wikipedia is also one of the most widely used resources to acquire, either automatically or semi-automatically, knowledge bases of structured data. Much research has been devoted to automatically building
disambiguation resources
,
parallel corpora
and
structured knowledge
from Wikipedia. Still, most of those projects have been based on single snapshots of Wikipedia, extracting the attribute values that were valid at a particular point in time. So about a year ago we compiled and released a data set that allows researchers to see how data attributes can change over time.
Figure 1. Infobox for the Republic of Palau in 2006 and 2013 showing the capital change.
Many attributes vary over time. These include the presidents of countries, the spouses of people, the populations of cities and the number of employees of companies. Every Wikipedia page has an associated history from which the users can view and compare past versions. Having the historical values of Infobox entries available would provide a historical overview of change affecting each entry, to understand which attributes are more likely to change over time or have a regularity in their changes, and which ones attract more user interest and are actually updated in a timely fashion. We believe that such a resource will also be useful in
training systems to learn to extract data from documents
, as it will allow us to collect more training examples by matching old values of an attribute inside old pages.
For this reason, we released, in collaboration with
Wikimedia Deutschland e.V.
, a resource containing all the edit history of infoboxes in Wikipedia pages. While this was already available indirectly in Wikimedia’s full history dumps, the smaller size of the released dataset will make it easier to download and process this data. The released dataset contains 38,979,871 infobox attribute updates for 1,845,172 different entities, and it is
available for download
. A description of the dataset can be found in our paper
WHAD: Wikipedia Historical Attributes Data
, accepted for publication at the
Language Resources and Evaluation journal
.
What kind of information can be learned from this data? Some examples from preliminary analyses include the following:
Every country in the world has a population in its Wikipedia attribute, which is updated at least yearly for more than 90% of them. The average error rate with respect to the yearly World Bank estimates is between two and three percent, mostly due to rounding.
50% of deaths are updated into Wikipedia infoboxes within a couple of days... but for scientists it takes 31 days to reach 50% coverage!
For the last episode of TV shows, the airing date is updated for 50% of them within 9 days; for for the first episode of TV shows, it takes 106 days.
While infobox attribute updates will be much easier to process as they transition into the
Wikidata
project, we are not there yet and we believe that the availability of this dataset will facilitate the study of changing attribute values. We are looking forward to the results of those studies.
Thanks to Googler Jean-Yves Delort and
Guillermo Garrido
and
Anselmo Peñas
from
UNED
for putting this dataset together, and to Angelika Mühlbauer and Kai Nissen from
Wikipedia Deutschland
for their support. Thanks also to
Thomas Hofmann
and
Fernando Pereira
for making this data release possible.
Labels
accessibility
ACL
ACM
Acoustic Modeling
Adaptive Data Analysis
ads
adsense
adwords
Africa
AI
AI for Social Good
Algorithms
Android
Android Wear
API
App Engine
App Inventor
April Fools
Art
Audio
Augmented Reality
Australia
Automatic Speech Recognition
AutoML
Awards
BigQuery
Cantonese
Chemistry
China
Chrome
Cloud Computing
Collaboration
Compression
Computational Imaging
Computational Photography
Computer Science
Computer Vision
conference
conferences
Conservation
correlate
Course Builder
crowd-sourcing
CVPR
Data Center
Data Discovery
data science
datasets
Deep Learning
DeepDream
DeepMind
distributed systems
Diversity
Earth Engine
economics
Education
Electronic Commerce and Algorithms
electronics
EMEA
EMNLP
Encryption
entities
Entity Salience
Environment
Europe
Exacycle
Expander
Faculty Institute
Faculty Summit
Flu Trends
Fusion Tables
gamification
Gboard
Gmail
Google Accelerated Science
Google Books
Google Brain
Google Cloud Platform
Google Docs
Google Drive
Google Genomics
Google Maps
Google Photos
Google Play Apps
Google Science Fair
Google Sheets
Google Translate
Google Trips
Google Voice Search
Google+
Government
grants
Graph
Graph Mining
Hardware
HCI
Health
High Dynamic Range Imaging
ICCV
ICLR
ICML
ICSE
Image Annotation
Image Classification
Image Processing
Inbox
India
Information Retrieval
internationalization
Internet of Things
Interspeech
IPython
Journalism
jsm
jsm2011
K-12
Kaggle
KDD
Keyboard Input
Klingon
Korean
Labs
Linear Optimization
localization
Low-Light Photography
Machine Hearing
Machine Intelligence
Machine Learning
Machine Perception
Machine Translation
Magenta
MapReduce
market algorithms
Market Research
materials science
Mixed Reality
ML
ML Fairness
MOOC
Moore's Law
Multimodal Learning
NAACL
Natural Language Processing
Natural Language Understanding
Network Management
Networks
Neural Networks
NeurIPS
Nexus
Ngram
NIPS
NLP
On-device Learning
open source
operating systems
Optical Character Recognition
optimization
osdi
osdi10
patents
Peer Review
ph.d. fellowship
PhD Fellowship
PhotoScan
Physics
PiLab
Pixel
Policy
Professional Development
Proposals
Public Data Explorer
publication
Publications
Quantum AI
Quantum Computing
Recommender Systems
Reinforcement Learning
renewable energy
Research
Research Awards
resource optimization
Responsible AI
Robotics
schema.org
Search
search ads
Security and Privacy
Self-Supervised Learning
Semantic Models
Semi-supervised Learning
SIGCOMM
SIGMOD
Site Reliability Engineering
Social Networks
Software
Sound Search
Speech
Speech Recognition
statistics
Structured Data
Style Transfer
Supervised Learning
Systems
TensorBoard
TensorFlow
TPU
Translate
trends
TTS
TV
UI
University Relations
UNIX
Unsupervised Learning
User Experience
video
Video Analysis
Virtual Reality
Vision Research
Visiting Faculty
Visualization
VLDB
Voice Search
Wiki
wikipedia
WWW
Year in Review
YouTube
Archive
2022
Jun
May
Apr
Mar
Feb
Jan
2021
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2020
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2019
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2018
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2017
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2016
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2015
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2014
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2013
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2012
Dec
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2011
Dec
Nov
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2010
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2009
Dec
Nov
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2008
Dec
Nov
Oct
Sep
Jul
May
Apr
Mar
Feb
2007
Oct
Sep
Aug
Jul
Jun
Feb
2006
Dec
Nov
Sep
Aug
Jul
Jun
Apr
Mar
Feb
Feed
Follow @googleai
Give us feedback in our
Product Forums
.