Blog
The latest news from Google AI
Fast, Accurate Detection of 100,000 Object Classes on a Single Machine
Thursday, June 27, 2013
Posted by Tom Dean, Google Research
Humans can distinguish among approximately 10,000 relatively high-level visual categories, but we can discriminate among a much larger set of visual stimuli referred to as
features
. These features might correspond to object parts, animal limbs, architectural details, landmarks, and other visual patterns we don’t have names for, and it is this larger collection of features we use as a basis with which to reconstruct and explain our day-to-day visual experience. Such features provide the components for more complicated visual stimuli and establish a context essential for us to resolve ambiguous scenes.
Contrary to current practice in computer vision, the explanatory context required to resolve a visual detail may not be entirely local. A flash of red bobbing along the ground might be a child’s toy in the context of a playground or a rooster in the context of a farmyard. It would be useful to have a large number of feature detectors capable of signaling the presence of such features, including detectors for sandboxes, swings, slides, cows, chickens, sheep and farm machinery necessary to establish the context for distinguishing between these two possibilities.
This year’s winner of the CVPR Best Paper Award, co-authored by Googlers Tom Dean, Mark Ruzon, Mark Segal, Jonathon Shlens, Sudheendra Vijayanarasimhan and Jay Yagnik, describes technology that will enable computer vision systems to extract the sort of semantically rich contextual information required to recognize visual categories even when a close examination of the pixels spanning the object in question might not be sufficient for identification in the absence of such contextual clues. Specifically, we consider a basic operation in computer vision that involves determining for each location in an image the degree to which a particular feature is likely to be present in the image at that particular location.
This so-called
convolution
operator is one of the key operations used in computer vision and, more broadly, all of signal processing. Unfortunately, it is computationally expensive and hence researchers use it sparingly or employ exotic SIMD hardware like GPUs and FPGAs to mitigate the computational cost. We turn things on their head by showing how one can use fast table lookup — a method called
hashing
— to trade time for space, replacing the computationally-expensive inner loop of the convolution operator — a sequence of multiplications and additions — required for performing millions of convolutions with a single table lookup.
We demonstrate the advantages of our approach by scaling object detection from the current state of the art involving several hundred or at most a few thousand of object categories to 100,000 categories requiring what would amount to more than a million convolutions. Moreover, our demonstration was carried out on a single commodity computer requiring only a few seconds for each image. The basic technology is used in several pieces of Google infrastructure and can be applied to problems outside of computer vision such as auditory signal processing.
On Wednesday, June 26, the Google engineers responsible for the research were awarded Best Paper at a ceremony at the IEEE Conference on Computer Vision and Pattern Recognition held in Portland Oregon. The full paper can be found
here
.
Labels
accessibility
ACL
ACM
Acoustic Modeling
Adaptive Data Analysis
ads
adsense
adwords
Africa
AI
AI for Social Good
Algorithms
Android
Android Wear
API
App Engine
App Inventor
April Fools
Art
Audio
Augmented Reality
Australia
Automatic Speech Recognition
AutoML
Awards
BigQuery
Cantonese
Chemistry
China
Chrome
Cloud Computing
Collaboration
Compression
Computational Imaging
Computational Photography
Computer Science
Computer Vision
conference
conferences
Conservation
correlate
Course Builder
crowd-sourcing
CVPR
Data Center
Data Discovery
data science
datasets
Deep Learning
DeepDream
DeepMind
distributed systems
Diversity
Earth Engine
economics
Education
Electronic Commerce and Algorithms
electronics
EMEA
EMNLP
Encryption
entities
Entity Salience
Environment
Europe
Exacycle
Expander
Faculty Institute
Faculty Summit
Flu Trends
Fusion Tables
gamification
Gboard
Gmail
Google Accelerated Science
Google Books
Google Brain
Google Cloud Platform
Google Docs
Google Drive
Google Genomics
Google Maps
Google Photos
Google Play Apps
Google Science Fair
Google Sheets
Google Translate
Google Trips
Google Voice Search
Google+
Government
grants
Graph
Graph Mining
Hardware
HCI
Health
High Dynamic Range Imaging
ICCV
ICLR
ICML
ICSE
Image Annotation
Image Classification
Image Processing
Inbox
India
Information Retrieval
internationalization
Internet of Things
Interspeech
IPython
Journalism
jsm
jsm2011
K-12
Kaggle
KDD
Keyboard Input
Klingon
Korean
Labs
Linear Optimization
localization
Low-Light Photography
Machine Hearing
Machine Intelligence
Machine Learning
Machine Perception
Machine Translation
Magenta
MapReduce
market algorithms
Market Research
Mixed Reality
ML
ML Fairness
MOOC
Moore's Law
Multimodal Learning
NAACL
Natural Language Processing
Natural Language Understanding
Network Management
Networks
Neural Networks
NeurIPS
Nexus
Ngram
NIPS
NLP
On-device Learning
open source
operating systems
Optical Character Recognition
optimization
osdi
osdi10
patents
Peer Review
ph.d. fellowship
PhD Fellowship
PhotoScan
Physics
PiLab
Pixel
Policy
Professional Development
Proposals
Public Data Explorer
publication
Publications
Quantum AI
Quantum Computing
Recommender Systems
Reinforcement Learning
renewable energy
Research
Research Awards
resource optimization
Robotics
schema.org
Search
search ads
Security and Privacy
Self-Supervised Learning
Semantic Models
Semi-supervised Learning
SIGCOMM
SIGMOD
Site Reliability Engineering
Social Networks
Software
Sound Search
Speech
Speech Recognition
statistics
Structured Data
Style Transfer
Supervised Learning
Systems
TensorBoard
TensorFlow
TPU
Translate
trends
TTS
TV
UI
University Relations
UNIX
Unsupervised Learning
User Experience
video
Video Analysis
Virtual Reality
Vision Research
Visiting Faculty
Visualization
VLDB
Voice Search
Wiki
wikipedia
WWW
Year in Review
YouTube
Archive
2021
Apr
Mar
Feb
Jan
2020
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2019
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2018
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2017
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2016
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2015
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2014
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2013
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2012
Dec
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2011
Dec
Nov
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2010
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2009
Dec
Nov
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2008
Dec
Nov
Oct
Sep
Jul
May
Apr
Mar
Feb
2007
Oct
Sep
Aug
Jul
Jun
Feb
2006
Dec
Nov
Sep
Aug
Jul
Jun
Apr
Mar
Feb
Feed
Follow @googleai
Give us feedback in our
Product Forums
.