Blog
The latest news from Google AI
Natural Language Understanding-focused awards announced
Tuesday, July 2, 2013
Posted by Massimiliano Ciaramita, Research Scientist and David Harper, Head University Relations (EMEA)
Some of the biggest challenges for the scientific community today involve understanding the principles and mechanisms that underlie natural language use on the Web. An example of long-standing problem is language ambiguity; when somebody types the word “Rio” in a query do they mean the city, a movie, a casino, or something else? Understanding the difference can be crucial to help users get the answer they are looking for. In the past few years, a significant effort in industry and academia has focused on disambiguating language with respect to Web-scale knowledge repositories such as Wikipedia and Freebase. These resources are used primarily as canonical, although incomplete, collections of “entities”. As entities are often connected in multiple ways, e.g., explicitly via hyperlinks and implicitly via factual information, such resources can be naturally thought of as (knowledge) graphs. This work has provided the first breakthroughs towards anchoring language in the Web to interpretable, albeit initially shallow, semantic representations. Google has brought the vision of semantic search directly to millions of users via the adoption of the
Knowledge Graph
. This massive change to search technology has also been called a shift “from strings to things”.
Understanding natural language is at the core of Google's work to help people get the information they need as quickly and easily as possible. At Google we work hard to advance the state of the art in natural language processing, to improve the understanding of fundamental principles, and to solve the algorithmic and engineering challenges to make these technologies part of everyday life. Language is inherently productive; an infinite number of meaningful new expressions can be formed by combining the meaning of their components systematically. The logical next step is the semantic modeling of structured meaningful expressions -- in other words, “what is said” about entities. We envision that knowledge graphs will support the next leap forward in language understanding towards scalable compositional analyses, by providing a universe of entities, facts and relations upon which semantic composition operations can be designed and implemented.
So we’ve just awarded over $1.2 million to support several natural language understanding research awards given to university research groups doing work in this area. Research topics range from semantic parsing to statistical models of life stories and novel compositional inference and representation approaches to modeling relations and events in the Knowledge Graph.
These awards went to researchers in nine universities and institutions worldwide, selected after a rigorous internal review:
Mark Johnson and Lan Du (Macquarie University) and Wray Buntine (NICTA) for “Generative models of Life Stories”
Percy Liang and Christopher Manning (Stanford University) for “Tensor Factorizing Knowledge Graphs”
Sebastian Riedel (University College London) and Andrew McCallum (University of Massachusetts, Amherst) for “Populating a Knowledge Base of Compositional Universal Schema”
Ivan Titov (University of Amsterdam) for “Learning to Reason by Exploiting Grounded Text Collections”
Hans Uszkoreit (Saarland University and DFKI), Feiyu Xu (DFKI and Saarland University) and Roberto Navigli (Sapienza University of Rome) for “Language Understanding cum Knowledge Yield”
Luke Zettlemoyer (University of Washington) for “Weakly Supervised Learning for Semantic Parsing with Knowledge Graphs”
We believe the results will be broadly useful to product development and will further scientific research. We look forward to working with these researchers, and we hope we will jointly push the frontier of natural language understanding research to the next level.
Labels
accessibility
ACL
ACM
Acoustic Modeling
Adaptive Data Analysis
ads
adsense
adwords
Africa
AI
AI for Social Good
Algorithms
Android
Android Wear
API
App Engine
App Inventor
April Fools
Art
Audio
Augmented Reality
Australia
Automatic Speech Recognition
AutoML
Awards
BigQuery
Cantonese
Chemistry
China
Chrome
Cloud Computing
Collaboration
Compression
Computational Imaging
Computational Photography
Computer Science
Computer Vision
conference
conferences
Conservation
correlate
Course Builder
crowd-sourcing
CVPR
Data Center
Data Discovery
data science
datasets
Deep Learning
DeepDream
DeepMind
distributed systems
Diversity
Earth Engine
economics
Education
Electronic Commerce and Algorithms
electronics
EMEA
EMNLP
Encryption
entities
Entity Salience
Environment
Europe
Exacycle
Expander
Faculty Institute
Faculty Summit
Flu Trends
Fusion Tables
gamification
Gboard
Gmail
Google Accelerated Science
Google Books
Google Brain
Google Cloud Platform
Google Docs
Google Drive
Google Genomics
Google Maps
Google Photos
Google Play Apps
Google Science Fair
Google Sheets
Google Translate
Google Trips
Google Voice Search
Google+
Government
grants
Graph
Graph Mining
Hardware
HCI
Health
High Dynamic Range Imaging
ICCV
ICLR
ICML
ICSE
Image Annotation
Image Classification
Image Processing
Inbox
India
Information Retrieval
internationalization
Internet of Things
Interspeech
IPython
Journalism
jsm
jsm2011
K-12
Kaggle
KDD
Keyboard Input
Klingon
Korean
Labs
Linear Optimization
localization
Low-Light Photography
Machine Hearing
Machine Intelligence
Machine Learning
Machine Perception
Machine Translation
Magenta
MapReduce
market algorithms
Market Research
Mixed Reality
ML
ML Fairness
MOOC
Moore's Law
Multimodal Learning
NAACL
Natural Language Processing
Natural Language Understanding
Network Management
Networks
Neural Networks
NeurIPS
Nexus
Ngram
NIPS
NLP
On-device Learning
open source
operating systems
Optical Character Recognition
optimization
osdi
osdi10
patents
Peer Review
ph.d. fellowship
PhD Fellowship
PhotoScan
Physics
PiLab
Pixel
Policy
Professional Development
Proposals
Public Data Explorer
publication
Publications
Quantum AI
Quantum Computing
Recommender Systems
Reinforcement Learning
renewable energy
Research
Research Awards
resource optimization
Robotics
schema.org
Search
search ads
Security and Privacy
Self-Supervised Learning
Semantic Models
Semi-supervised Learning
SIGCOMM
SIGMOD
Site Reliability Engineering
Social Networks
Software
Sound Search
Speech
Speech Recognition
statistics
Structured Data
Style Transfer
Supervised Learning
Systems
TensorBoard
TensorFlow
TPU
Translate
trends
TTS
TV
UI
University Relations
UNIX
Unsupervised Learning
User Experience
video
Video Analysis
Virtual Reality
Vision Research
Visiting Faculty
Visualization
VLDB
Voice Search
Wiki
wikipedia
WWW
Year in Review
YouTube
Archive
2021
Feb
Jan
2020
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2019
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2018
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2017
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2016
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2015
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2014
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2013
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2012
Dec
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2011
Dec
Nov
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2010
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2009
Dec
Nov
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2008
Dec
Nov
Oct
Sep
Jul
May
Apr
Mar
Feb
2007
Oct
Sep
Aug
Jul
Jun
Feb
2006
Dec
Nov
Sep
Aug
Jul
Jun
Apr
Mar
Feb
Feed
Follow @googleai
Give us feedback in our
Product Forums
.