Blog
The latest from Google Research
Moore’s Law Part 4: Moore's Law in other domains
Friday, November 15, 2013
This is the last entry of a series focused on Moore’s Law and its implications moving forward, edited from a White paper on Moore’s Law, written by Google University Relations Manager Michel Benard. This series quotes major sources about Moore’s Law and explores how they believe Moore’s Law will likely continue over the course of the next several years. We will also explore if there are fields other than digital electronics that either have an emerging Moore's Law situation, or promises for such a Law that would drive their future performance.
--
The quest
for Moore’s Law
and its potential impact in other disciplines is a journey the technology industry is starting, by crossing the Rubicon from the semiconductor industry to other less explored fields, but with the particular mindset created by Moore’s Law. Our goal is to explore if there are Moore’s Law opportunities emerging in other disciplines, as well as its potential impact. As such, we have interviewed several professors and researchers and asked them if they could see emerging ‘Moore’s Laws’ in their discipline. Listed below are some highlights of those discussions, ranging from CS+ to potentials in the Energy Sector:
Sensors and Data Acquisition
Ed Parsons
, Google Geospatial Technologist
The More than Moore discussion can be extended to outside of the main chip, and go within the same board as the main chip or within the device that a user is carrying. Greater sensors capabilities (for the measurement of pressure, electromagnetic field and other local conditions) allow including them in smart phones, glasses, or other devices and perform local data acquisition. This trend is strong, and should allow future devices benefiting from Moore’s Law to receive enough data to perform more complex applications.
Metcalfe’s Law
states that the value of a telecommunication network is proportional to the square of connected nodes of the system. This law can be used in parallel to Moore’s Law to evaluate the value of the
Internet of Things
. The network itself can be seen as composed by layers: at the user’s local level (to capture data related to the body of the user, or to immediately accessible objects), locally around the user (such as to get data within the same street as the user), and finally globally (to get data from the global internet). The extrapolation made earlier in this blog (several TB available in flash memory) will lead to the ability to construct, exchange and download/upload entire contexts for a given situation or a given application and use these contexts without intense network activity, or even with very little or no network activity.
Future of Moore’s Law and its impact on Physics
Sverre Jarp
, CERN
CERN
, and its experiments with the Large Electron-Positron Collider (
LEP
) and Large Hadron Collider (LHC) generate data on the order of a PetaByte per year; this data has to be filtered, processed and analyzed in order to find meaningful physics events leading to new discoveries. In this context Moore’s Law has been particularly helpful to allow computing power, storage and networking capabilities at CERN and at other High Energy Physics (
HEP
) centers to scale up regularly. Several generations of hardware and software have been exhausted during the journey from mainframes to today’s clusters.
CERN has a long tradition of collaboration with chip manufacturers, hardware and software vendors to understand and predict next trends in the computing evolution curve. Recent analysis indicates that Moore’s Law will likely continue over the next decade. The statement of ‘several TB of flash memory availability by 2025’ may even be a little conservative according to most recent analysis.
Big Data Visualizations
Katy Börner
, Indiana University
Thanks to Moore’s Law, the amount of data available for any given phenomenon, whether sensed or simulated, has been growing by several orders of magnitude over the past decades. Intelligent sampling can be used to filter out the most relevant bits of information and is practiced in Physics, Astronomy, Medicine and other sciences. Subsequently, data needs to be analyzed and visualized to identify meaningful trends and phenomena, and to communicate them to others.
While most people learn in school how to read charts and maps, many never learn how to read a network layout—data literacy remains a challenge. The
Information Visualization Massive Open Online Course (MOOC)
at Indiana University teaches students from more than 100 countries how to read but also how to design meaningful network, topical, geospatial, and temporal visualizations. Using the tools introduced in this free course anyone can analyze, visualize, and navigate complex data sets to understand patterns and trends.
Candidate for Moore’s Law in Energy
Professor Francesco Stellacci
, EPFL
It is currently hard to see a “Moore’s Law” applying to candidates in energy technology. Nuclear fusion could reserve some positive surprises, if several significant breakthroughs are found in the process of creating usable energy with this technique. For any other technology the technological growth will be slower. Best solar cells of today have a 30% efficiency, which could scale higher of course (obviously not much more than a factor of 3). Also cost could be driven down by an order of magnitude. Best estimates show, however, a combined performance improvement by a factor 30 over many years.
Further Discussion of Moore’s Law in Energy
Ross Koningstein
, Google Director Emeritus
As of today there is no obvious Moore’s Law in the Energy sector which could decrease some major costs by 50% every 18 months. However material properties at nanoscale, and chemical processes such as
catalysis
are being investigated and could lead to promising results. Applications targeted are
hydrocarbon
creation at scale and improvement of
oil refinery processes
, where breakthrough in micro/nano property catalysts is pursued. Hydrocarbons are much more compatible at scale with the existing automotive/aviation and natural gas distribution systems. Here in California,
Google Ventures
has invested in
Cool Planet Energy Systems
, a company with neat technology that can convert biomass to gasoline/jet fuel/diesel with impressive efficiency.
One of the challenges is the ability to run many experiments at low cost per experiment, instead of only a few expensive experiments per year. Discoveries are likely to happen faster if more experiments are conducted. This leads to heavier investments, which are difficult to achieve within slim margin businesses. Therefore the nurturing processes for disruptive business are likely to come from new players, beside existing players which will decide to fund significant new investments.
Of course, these discussions could be opened for many other sectors. The opportunities for more discourse on the impact and future of Moore’s Law on CS and other disciplines are abundant, and can be continued with your comments on the
Research at Google Google+ page
. Please join, and share your thoughts.
Labels
accessibility
ACL
ACM
Acoustic Modeling
Adaptive Data Analysis
ads
adsense
adwords
Africa
AI
AI for Social Good
Algorithms
Android
Android Wear
API
App Engine
App Inventor
April Fools
Art
Audio
Augmented Reality
Australia
Automatic Speech Recognition
AutoML
Awards
BigQuery
Cantonese
Chemistry
China
Chrome
Cloud Computing
Collaboration
Compression
Computational Imaging
Computational Photography
Computer Science
Computer Vision
conference
conferences
Conservation
correlate
Course Builder
crowd-sourcing
CVPR
Data Center
Data Discovery
data science
datasets
Deep Learning
DeepDream
DeepMind
distributed systems
Diversity
Earth Engine
economics
Education
Electronic Commerce and Algorithms
electronics
EMEA
EMNLP
Encryption
entities
Entity Salience
Environment
Europe
Exacycle
Expander
Faculty Institute
Faculty Summit
Flu Trends
Fusion Tables
gamification
Gboard
Gmail
Google Accelerated Science
Google Books
Google Brain
Google Cloud Platform
Google Docs
Google Drive
Google Genomics
Google Maps
Google Photos
Google Play Apps
Google Science Fair
Google Sheets
Google Translate
Google Trips
Google Voice Search
Google+
Government
grants
Graph
Graph Mining
Hardware
HCI
Health
High Dynamic Range Imaging
ICCV
ICLR
ICML
ICSE
Image Annotation
Image Classification
Image Processing
Inbox
India
Information Retrieval
internationalization
Internet of Things
Interspeech
IPython
Journalism
jsm
jsm2011
K-12
Kaggle
KDD
Keyboard Input
Klingon
Korean
Labs
Linear Optimization
localization
Low-Light Photography
Machine Hearing
Machine Intelligence
Machine Learning
Machine Perception
Machine Translation
Magenta
MapReduce
market algorithms
Market Research
materials science
Mixed Reality
ML
ML Fairness
MOOC
Moore's Law
Multimodal Learning
NAACL
Natural Language Processing
Natural Language Understanding
Network Management
Networks
Neural Networks
NeurIPS
Nexus
Ngram
NIPS
NLP
On-device Learning
open source
operating systems
Optical Character Recognition
optimization
osdi
osdi10
patents
Peer Review
ph.d. fellowship
PhD Fellowship
PhotoScan
Physics
PiLab
Pixel
Policy
Professional Development
Proposals
Public Data Explorer
publication
Publications
Quantum AI
Quantum Computing
Recommender Systems
Reinforcement Learning
renewable energy
Research
Research Awards
resource optimization
Responsible AI
Robotics
schema.org
Search
search ads
Security and Privacy
Self-Supervised Learning
Semantic Models
Semi-supervised Learning
SIGCOMM
SIGMOD
Site Reliability Engineering
Social Networks
Software
Sound Search
Speech
Speech Recognition
statistics
Structured Data
Style Transfer
Supervised Learning
Systems
TensorBoard
TensorFlow
TPU
Translate
trends
TTS
TV
UI
University Relations
UNIX
Unsupervised Learning
User Experience
video
Video Analysis
Virtual Reality
Vision Research
Visiting Faculty
Visualization
VLDB
Voice Search
Wiki
wikipedia
WWW
Year in Review
YouTube
Archive
2022
Jun
May
Apr
Mar
Feb
Jan
2021
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2020
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2019
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2018
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2017
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2016
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2015
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2014
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2013
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2012
Dec
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2011
Dec
Nov
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2010
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2009
Dec
Nov
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2008
Dec
Nov
Oct
Sep
Jul
May
Apr
Mar
Feb
2007
Oct
Sep
Aug
Jul
Jun
Feb
2006
Dec
Nov
Sep
Aug
Jul
Jun
Apr
Mar
Feb
Feed
Follow @googleai
Give us feedback in our
Product Forums
.