Blog
The latest from Google Research
Google Award Program stimulates Journalism and CS collaboration
miércoles, 19 de febrero de 2014
Posted by Krishna Bharat, Distinguished Research Scientist
Last fall, Google invited academic researchers to participate in a Computational Journalism awards program focused on the intersection of Computer Science and Journalism. We solicited proposals for original research projects relevant to today’s fast evolving news industry.
As technology continues to shape and be shaped by the media landscape, applicants were asked to rethink traditional models and roles in the ecosystem, and reimagine the lifecycle of the news story in the online world. We encouraged them to develop innovative tools and open source software that could benefit readers and be game-changers for reporters and publishers. Each award includes funding of $60,000 in cash and $20,000 in computing credits on Google’s Cloud Platform.
We congratulate the recipients of these awards, whose projects are described below, and look forward to the results of their research. Stay tuned for updates on their progress.
Larry Birnbaum
, Professor of Electrical Engineering and Computer Science, and Journalism, Northwestern University
Project
: Thematic Characterization of News Stories
This project aims to develop computational methods for identifying abstract themes or "angles" in news stories, e.g., seeing a story as an instance of "pulling yourself up by your bootstraps," or as a "David vs. Goliath" story. In collaboration with journalism and computer science students, we will develop applications utilizing these methods in the creation, distribution, and consumption of news content.
Irfan Essa
, Professor, Georgia Institute of Technology
Project
: Tracing Reuse in Political Language
Our goal in this project is to research, and then develop a data-mining tool that allows an online researcher to find and trace language reuse. By language reuse, we specifically mean: Can we find if in a current text some language was used that can be traced back to some other text or script. The technical innovation in this project is aimed at (1) identifying linguistic reuse in documents as well as other forms of material, which can be converted to text, and therefore includes political speeches and videos. Another innovation will be in (2) how linguistic reuse can be traced through the web and online social networks.
Susan McGregor
, Assistant Director, Tow Center for Digital Journalism, Columbia Journalism School
Project
: InfoScribe
InfoScribe
is a collaborative web platform that lets citizens participate in investigative journalism projects by digitizing select data from scanned document sets uploaded by journalists. One of InfoScribe's primary research goals is to explore how community participation in journalistic activities can help improve their accuracy, transparency and impact. Additionally, InfoScribe seeks to build and expand upon understandings of how computer vision and statistical inference can be most efficiently combined with human effort in the completion of complex tasks.
Paul Resnick
, Professor, University of Michigan School of Information
Project
: RumorLens
RumorLens
is a tool that will aid journalists in finding posts that spread or correct a particular rumor on Twitter, by exploring the size of the audiences that those posts have reached. In the collection phase, the user provides one or a few exemplar tweets and then manually classifies a few hundred others as spreading the rumor, correcting it, or labeling it as unrelated. This enables automatic retrieval and classification of remaining tweets, which are then presented in an interactive visualization that shows audience sizes.
Ryan Thornburg
, Associate Professor, School of Journalism and Mass Communication, University of North Carolina at Chapel Hill
Project: Public Records Dashboard for Small Newsrooms
Building off our Knight News Challenge effort to bring data-driven journalism to readers of rural newspaper websites, we are developing an internal newsroom tool that will alert reporters and editors to potential story tips found in public data. Our project aims to lower the cost of finding in public data sets stories that shine light in dark places, hold powerful people accountable, and explain our increasingly complex and interconnected world. (Public facing site for the data acquisition element of the project at
http://open-nc.org
)
Etiquetas
accessibility
ACL
ACM
Acoustic Modeling
Adaptive Data Analysis
ads
adsense
adwords
Africa
AI
AI for Social Good
Algorithms
Android
Android Wear
API
App Engine
App Inventor
April Fools
Art
Audio
Augmented Reality
Australia
Automatic Speech Recognition
AutoML
Awards
BigQuery
Cantonese
Chemistry
China
Chrome
Cloud Computing
Collaboration
Compression
Computational Imaging
Computational Photography
Computer Science
Computer Vision
conference
conferences
Conservation
correlate
Course Builder
crowd-sourcing
CVPR
Data Center
Data Discovery
data science
datasets
Deep Learning
DeepDream
DeepMind
distributed systems
Diversity
Earth Engine
economics
Education
Electronic Commerce and Algorithms
electronics
EMEA
EMNLP
Encryption
entities
Entity Salience
Environment
Europe
Exacycle
Expander
Faculty Institute
Faculty Summit
Flu Trends
Fusion Tables
gamification
Gboard
Gmail
Google Accelerated Science
Google Books
Google Brain
Google Cloud Platform
Google Docs
Google Drive
Google Genomics
Google Maps
Google Photos
Google Play Apps
Google Science Fair
Google Sheets
Google Translate
Google Trips
Google Voice Search
Google+
Government
grants
Graph
Graph Mining
Hardware
HCI
Health
High Dynamic Range Imaging
ICCV
ICLR
ICML
ICSE
Image Annotation
Image Classification
Image Processing
Inbox
India
Information Retrieval
internationalization
Internet of Things
Interspeech
IPython
Journalism
jsm
jsm2011
K-12
Kaggle
KDD
Keyboard Input
Klingon
Korean
Labs
Linear Optimization
localization
Low-Light Photography
Machine Hearing
Machine Intelligence
Machine Learning
Machine Perception
Machine Translation
Magenta
MapReduce
market algorithms
Market Research
materials science
Mixed Reality
ML
ML Fairness
MOOC
Moore's Law
Multimodal Learning
NAACL
Natural Language Processing
Natural Language Understanding
Network Management
Networks
Neural Networks
NeurIPS
Nexus
Ngram
NIPS
NLP
On-device Learning
open source
operating systems
Optical Character Recognition
optimization
osdi
osdi10
patents
Peer Review
ph.d. fellowship
PhD Fellowship
PhotoScan
Physics
PiLab
Pixel
Policy
Professional Development
Proposals
Public Data Explorer
publication
Publications
Quantum AI
Quantum Computing
Recommender Systems
Reinforcement Learning
renewable energy
Research
Research Awards
resource optimization
Responsible AI
Robotics
schema.org
Search
search ads
Security and Privacy
Self-Supervised Learning
Semantic Models
Semi-supervised Learning
SIGCOMM
SIGMOD
Site Reliability Engineering
Social Networks
Software
Sound Search
Speech
Speech Recognition
statistics
Structured Data
Style Transfer
Supervised Learning
Systems
TensorBoard
TensorFlow
TPU
Translate
trends
TTS
TV
UI
University Relations
UNIX
Unsupervised Learning
User Experience
video
Video Analysis
Virtual Reality
Vision Research
Visiting Faculty
Visualization
VLDB
Voice Search
Wiki
wikipedia
WWW
Year in Review
YouTube
Archive
2022
may
abr
mar
feb
ene
2021
dic
nov
oct
sep
ago
jul
jun
may
abr
mar
feb
ene
2020
dic
nov
oct
sep
ago
jul
jun
may
abr
mar
feb
ene
2019
dic
nov
oct
sep
ago
jul
jun
may
abr
mar
feb
ene
2018
dic
nov
oct
sep
ago
jul
jun
may
abr
mar
feb
ene
2017
dic
nov
oct
sep
ago
jul
jun
may
abr
mar
feb
ene
2016
dic
nov
oct
sep
ago
jul
jun
may
abr
mar
feb
ene
2015
dic
nov
oct
sep
ago
jul
jun
may
abr
mar
feb
ene
2014
dic
nov
oct
sep
ago
jul
jun
may
abr
mar
feb
ene
2013
dic
nov
oct
sep
ago
jul
jun
may
abr
mar
feb
ene
2012
dic
oct
sep
ago
jul
jun
may
abr
mar
feb
ene
2011
dic
nov
sep
ago
jul
jun
may
abr
mar
feb
ene
2010
dic
nov
oct
sep
ago
jul
jun
may
abr
mar
feb
ene
2009
dic
nov
ago
jul
jun
may
abr
mar
feb
ene
2008
dic
nov
oct
sep
jul
may
abr
mar
feb
2007
oct
sep
ago
jul
jun
feb
2006
dic
nov
sep
ago
jul
jun
abr
mar
feb
Feed
Follow @googleai
Give us feedback in our
Product Forums
.