Blog
The latest news from Google AI
Genomic Data Processing on Google Cloud Platform
Tuesday, April 5, 2016
Posted by Dr. Stacey Gabriel, Director of the Genomics Platform at the Broad Institute of MIT and Harvard
Today we hear from Broad Institute of MIT and Harvard about how their researchers and software engineers are collaborating closely with the Google Genomics team on large-scale genomic data analysis. They’ve already reduced the time and cost for whole genome processing by several fold, helping researchers think even bigger. Broad’s open source tools, developed in close
collaboration with Google Genomics
, will also be made available to the wider research community.
– Jonathan Bingham, Product Manager, Google Genomics
Dr. Stacey Gabriel, Director of the
Genomics Platform at the Broad Institute
As one of the largest genome sequencing centers in the world, the
Broad Institute
of MIT and Harvard generates a lot of data. Our DNA sequencers produce more than 20 Terabytes (TB) of genomic data per day, and they run 365 days a year. Moreover, our rate of data generation is not only growing, but accelerating – our output increased more than two-fold last year, and nearly two-fold the previous year. We are not alone in facing this embarrassment of riches; across the whole genomics community, the rate of data production is doubling about every eight months with no end in sight.
Here at Broad, our team of software engineers and methods developers have spent the last year working to re-architect our production sequencing environment for the cloud. This has been no small feat, especially as we had to build the plane while we flew it! It required an entirely new system for developing and deploying pipelines (which we call
Cromwell
), as well as a new framework for wet lab quality control that uncouples data generation from data processing.
Courtesy: Broad Institute of MIT and Harvard
Last summer Broad and Google
announced a collaboration
to develop a safe, secure and scalable cloud computing infrastructure capable of storing and processing enormous datasets. We also set out to build cloud-supported tools to analyze such data and unravel long-standing mysteries about human health. Our engineers collaborate closely; we teach them about genomic data science and genomic data engineering, and they teach us about cloud computing and distributed systems. To us, this is a wonderful model for how a basic research institute can productively collaborate with industry to advance science and medicine. Both groups move faster and go further by working together.
As of today, the largest and most important of our production pipelines, the
Whole Genome Sequencing Pipeline
, has been completely ported to the
Google Cloud Platform
(GCP). We are now beginning to run production jobs on GCP and will be switching over entirely this month. This switch has proved to be a very cost-effective decision. While the conventional wisdom is that public clouds can be more expensive, our experience is that cloud is dramatically cheaper. Consider the curve below that my colleague Kristian Cibulskis recently showed at
GCP NEXT
:
Out of the box, the cost of running the
Genome Analysis Toolkit
(GATK) best practices pipeline on a 30X-coverage whole genome was roughly the same as the cost of our on-premise infrastructure. Over a period of a few months, however, we developed techniques that allowed us to
really
reduce costs: We learned how to parallelize the computationally intensive steps like aligning DNA sequences against a reference genome. We also optimized for GCP’s infrastructure to lower costs by using features such as
Preemptible VMs
. After doing these optimizations, our production whole genome pipeline was about 20% the cost of where we were when we started, saving our researchers millions of dollars, all while reducing processing turnaround time eight-fold.
There is a similar story to be told on storage of the input and output data.
Google Cloud Storage Nearline
is a medium for storing DNA sequence alignments and raw data. Like most people in genomics, we access genetic variants data every day, but raw DNA sequences only a few times per year, such as when there is a new algorithm that requires raw data or a new assembly of the human genome. Nearline’s price/performance tradeoff is well-suited to data that’s infrequently accessed. By using Nearline, along with some compression tricks, we were able to reduce our storage costs by greater than 50%.
Altogether, we estimate that, by using GCP services for both compute and storage, we will be able to lower the total cost of ownership for storing and processing genomic data significantly relative to our on premise costs. Looking forward, we also see advantages for data sharing, particularly for large multi-group genome projects. An environment where the data can be securely stored and analyzed will solve problems of multiple groups copying and paying for transmission and storage of the same data.
Porting the GATK whole genome pipeline to the cloud is just the starting point. During the coming year, we plan to migrate the bulk of our production pipelines to the cloud, including tools for arrays, exomes, cancer genomes, and RNA-seq. Moreover, our non-exclusive relationship with Google is founded on the principle that our groups can leverage complementary skills to make products that can not only serve the needs of Broad, but also help serve the needs of researchers around the world. Therefore, as we migrate each of our pipelines to the cloud to meet our own needs, we also plan to make them available to the greater genomics community through a Software-as-a-Service model.
This is an exciting time for us at Broad. For more than a decade we have served the genomics community by acting as a hub for data generation; now, we are extending this mission to encompass not only sequencing services, but also data services. We believe that by expanding access to our tools and optimizing our pipelines for the cloud, will enable the community to benefit from the enormous effort we have invested. We look forward to expanding the scope of this mission in the years to come.
Labels
accessibility
ACL
ACM
Acoustic Modeling
Adaptive Data Analysis
ads
adsense
adwords
Africa
AI
AI for Social Good
Algorithms
Android
Android Wear
API
App Engine
App Inventor
April Fools
Art
Audio
Augmented Reality
Australia
Automatic Speech Recognition
AutoML
Awards
BigQuery
Cantonese
Chemistry
China
Chrome
Cloud Computing
Collaboration
Compression
Computational Imaging
Computational Photography
Computer Science
Computer Vision
conference
conferences
Conservation
correlate
Course Builder
crowd-sourcing
CVPR
Data Center
Data Discovery
data science
datasets
Deep Learning
DeepDream
DeepMind
distributed systems
Diversity
Earth Engine
economics
Education
Electronic Commerce and Algorithms
electronics
EMEA
EMNLP
Encryption
entities
Entity Salience
Environment
Europe
Exacycle
Expander
Faculty Institute
Faculty Summit
Flu Trends
Fusion Tables
gamification
Gboard
Gmail
Google Accelerated Science
Google Books
Google Brain
Google Cloud Platform
Google Docs
Google Drive
Google Genomics
Google Maps
Google Photos
Google Play Apps
Google Science Fair
Google Sheets
Google Translate
Google Trips
Google Voice Search
Google+
Government
grants
Graph
Graph Mining
Hardware
HCI
Health
High Dynamic Range Imaging
ICCV
ICLR
ICML
ICSE
Image Annotation
Image Classification
Image Processing
Inbox
India
Information Retrieval
internationalization
Internet of Things
Interspeech
IPython
Journalism
jsm
jsm2011
K-12
Kaggle
KDD
Keyboard Input
Klingon
Korean
Labs
Linear Optimization
localization
Low-Light Photography
Machine Hearing
Machine Intelligence
Machine Learning
Machine Perception
Machine Translation
Magenta
MapReduce
market algorithms
Market Research
Mixed Reality
ML
ML Fairness
MOOC
Moore's Law
Multimodal Learning
NAACL
Natural Language Processing
Natural Language Understanding
Network Management
Networks
Neural Networks
NeurIPS
Nexus
Ngram
NIPS
NLP
On-device Learning
open source
operating systems
Optical Character Recognition
optimization
osdi
osdi10
patents
Peer Review
ph.d. fellowship
PhD Fellowship
PhotoScan
Physics
PiLab
Pixel
Policy
Professional Development
Proposals
Public Data Explorer
publication
Publications
Quantum AI
Quantum Computing
Recommender Systems
Reinforcement Learning
renewable energy
Research
Research Awards
resource optimization
Robotics
schema.org
Search
search ads
Security and Privacy
Self-Supervised Learning
Semantic Models
Semi-supervised Learning
SIGCOMM
SIGMOD
Site Reliability Engineering
Social Networks
Software
Sound Search
Speech
Speech Recognition
statistics
Structured Data
Style Transfer
Supervised Learning
Systems
TensorBoard
TensorFlow
TPU
Translate
trends
TTS
TV
UI
University Relations
UNIX
Unsupervised Learning
User Experience
video
Video Analysis
Virtual Reality
Vision Research
Visiting Faculty
Visualization
VLDB
Voice Search
Wiki
wikipedia
WWW
Year in Review
YouTube
Archive
2021
Apr
Mar
Feb
Jan
2020
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2019
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2018
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2017
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2016
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2015
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2014
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2013
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2012
Dec
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2011
Dec
Nov
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2010
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2009
Dec
Nov
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2008
Dec
Nov
Oct
Sep
Jul
May
Apr
Mar
Feb
2007
Oct
Sep
Aug
Jul
Jun
Feb
2006
Dec
Nov
Sep
Aug
Jul
Jun
Apr
Mar
Feb
Feed
Follow @googleai
Give us feedback in our
Product Forums
.