Blog
The latest news from Google AI
Meet Parsey’s Cousins: Syntax for 40 languages, plus new SyntaxNet capabilities
Monday, August 8, 2016
Posted by Chris Alberti, Dave Orr & Slav Petrov, Google Natural Language Understanding Team
Just in time for
ACL 2016
, we are pleased to announce that Parsey McParseface,
released in May as part of SyntaxNet
and the basis for the
Cloud Natural Language API
, now has 40 cousins!
Parsey’s Cousins
is a collection of pretrained syntactic models for 40 languages, capable of analyzing the native language of more than half of the world’s population at often unprecedented
accuracy
. To better address the linguistic phenomena occurring in these languages we have endowed SyntaxNet with new abilities for
Text Segmentation
and
Morphological Analysis
.
When we released Parsey, we were already planning to expand to more languages, and it soon became clear that this was both urgent and important, because researchers were having trouble creating top notch SyntaxNet models for other languages.
The reason for that is a little bit subtle. SyntaxNet, like other
TensorFlow
models, has a lot of knobs to turn, which affect accuracy and speed. These knobs are called hyperparameters, and control things like the learning rate and its decay, momentum, and random initialization. Because neural networks are more sensitive to the choice of these hyperparameters than many other machine learning algorithms, picking the right hyperparameter setting is very important. Unfortunately there is no tested and proven way of doing this and picking good hyperparameters is mostly an empirical science -- we try a bunch of settings and see what works best.
An additional challenge is that training these models can take a long time, several days on very fast hardware. Our solution is to train many models in parallel via
MapReduce
, and when one looks promising, train a bunch more models with similar settings to fine-tune the results. This can really add up -- on average, we train more than 70 models per language. The plot below shows how the accuracy varies depending on the hyperparameters as training progresses. The best models are up to 4% absolute more accurate than ones trained without hyperparameter tuning.
Held-out set accuracy for various English parsing models with different hyperparameters (each line corresponds to one training run with specific hyperparameters). In some cases training is a lot slower and in many cases a suboptimal choice of hyperparameters leads to significantly lower accuracy. We are releasing the best model that we were able to train for each language.
In order to do a good job at analyzing the grammar of other languages, it was not sufficient to just fine-tune our English setup. We also had to expand the capabilities of SyntaxNet. The first extension is a model for text segmentation, which is the task of identifying word boundaries. In languages like English, this isn’t very hard -- you can mostly look for spaces and punctuation. In Chinese, however, this can be very challenging, because words are not separated by spaces. To correctly analyze dependencies between Chinese words, SyntaxNet needs to understand text segmentation -- and now it does.
Analysis of a Chinese string into a parse tree showing dependency labels, word tokens, and parts of speech (read top to bottom for each word token).
The second extension is a model for morphological analysis. Morphology is a language feature that is poorly represented in English. It describes inflection: i.e., how the grammatical function and meaning of the word changes as its spelling changes. In English, we add an -s to a word to indicate plurality. In Russian, a
heavily inflected language
, morphology can indicate number, gender, whether the word is the subject or object of a sentence, possessives, prepositional phrases, and more. To understand the syntax of a sentence in Russian, SyntaxNet needs to understand morphology -- and now it does.
Parse trees showing dependency labels, parts of speech, and morphology.
As you might have noticed, the parse trees for all of the sentences above look very similar. This is because we follow the content-head principle, under which dependencies are drawn between content words, with function words becoming leaves in the parse tree. This idea was developed by the
Universal Dependencies
project in order to increase parallelism between languages. Parsey’s Cousins are trained on
treebanks
provided by this project and are designed to be cross-linguistically consistent and thus easier to use in multi-lingual language understanding applications.
Using the same set of labels across languages can help us understand how sentences in different languages, or variations in the same language, convey the same meaning. In all of the above examples, the root indicates the main verb of the sentence and there is a passive nominal subject (indicated by the arc labeled with ‘nsubjpass’) and a passive auxiliary (‘auxpass’). If you look closely, you will also notice some differences because the grammar of each language differs. For example, English uses the preposition ‘by,’ where Russian uses morphology to mark that the phrase ‘the publisher (издателем)’ is in
instrumental case
-- the meaning is the same, it is just expressed differently.
Google has been involved in the Universal Dependencies project since its
inception
and we are very excited to be able to bring together our efforts on datasets and modeling. We hope that this release will facilitate research progress in building computer systems that can understand all of the world’s languages.
Parsey's Cousins can be found on
GitHub
, along with
Parsey McParseface
and
SyntaxNet
.
Labels
accessibility
ACL
ACM
Acoustic Modeling
Adaptive Data Analysis
ads
adsense
adwords
Africa
AI
AI for Social Good
Algorithms
Android
Android Wear
API
App Engine
App Inventor
April Fools
Art
Audio
Augmented Reality
Australia
Automatic Speech Recognition
AutoML
Awards
BigQuery
Cantonese
Chemistry
China
Chrome
Cloud Computing
Collaboration
Compression
Computational Imaging
Computational Photography
Computer Science
Computer Vision
conference
conferences
Conservation
correlate
Course Builder
crowd-sourcing
CVPR
Data Center
Data Discovery
data science
datasets
Deep Learning
DeepDream
DeepMind
distributed systems
Diversity
Earth Engine
economics
Education
Electronic Commerce and Algorithms
electronics
EMEA
EMNLP
Encryption
entities
Entity Salience
Environment
Europe
Exacycle
Expander
Faculty Institute
Faculty Summit
Flu Trends
Fusion Tables
gamification
Gboard
Gmail
Google Accelerated Science
Google Books
Google Brain
Google Cloud Platform
Google Docs
Google Drive
Google Genomics
Google Maps
Google Photos
Google Play Apps
Google Science Fair
Google Sheets
Google Translate
Google Trips
Google Voice Search
Google+
Government
grants
Graph
Graph Mining
Hardware
HCI
Health
High Dynamic Range Imaging
ICCV
ICLR
ICML
ICSE
Image Annotation
Image Classification
Image Processing
Inbox
India
Information Retrieval
internationalization
Internet of Things
Interspeech
IPython
Journalism
jsm
jsm2011
K-12
Kaggle
KDD
Keyboard Input
Klingon
Korean
Labs
Linear Optimization
localization
Low-Light Photography
Machine Hearing
Machine Intelligence
Machine Learning
Machine Perception
Machine Translation
Magenta
MapReduce
market algorithms
Market Research
Mixed Reality
ML
ML Fairness
MOOC
Moore's Law
Multimodal Learning
NAACL
Natural Language Processing
Natural Language Understanding
Network Management
Networks
Neural Networks
NeurIPS
Nexus
Ngram
NIPS
NLP
On-device Learning
open source
operating systems
Optical Character Recognition
optimization
osdi
osdi10
patents
Peer Review
ph.d. fellowship
PhD Fellowship
PhotoScan
Physics
PiLab
Pixel
Policy
Professional Development
Proposals
Public Data Explorer
publication
Publications
Quantum AI
Quantum Computing
Recommender Systems
Reinforcement Learning
renewable energy
Research
Research Awards
resource optimization
Robotics
schema.org
Search
search ads
Security and Privacy
Self-Supervised Learning
Semantic Models
Semi-supervised Learning
SIGCOMM
SIGMOD
Site Reliability Engineering
Social Networks
Software
Sound Search
Speech
Speech Recognition
statistics
Structured Data
Style Transfer
Supervised Learning
Systems
TensorBoard
TensorFlow
TPU
Translate
trends
TTS
TV
UI
University Relations
UNIX
Unsupervised Learning
User Experience
video
Video Analysis
Virtual Reality
Vision Research
Visiting Faculty
Visualization
VLDB
Voice Search
Wiki
wikipedia
WWW
Year in Review
YouTube
Archive
2021
Jan
2020
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2019
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2018
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2017
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2016
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2015
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2014
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2013
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2012
Dec
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2011
Dec
Nov
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2010
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2009
Dec
Nov
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2008
Dec
Nov
Oct
Sep
Jul
May
Apr
Mar
Feb
2007
Oct
Sep
Aug
Jul
Jun
Feb
2006
Dec
Nov
Sep
Aug
Jul
Jun
Apr
Mar
Feb
Feed
Follow @googleai
Give us feedback in our
Product Forums
.