Blog
The latest news from Google AI
Introducing NIMA: Neural Image Assessment
Monday, December 18, 2017
Posted by Hossein Talebi, Software Engineer and Peyman Milanfar Research Scientist, Machine Perception
Quantification of image quality and aesthetics has been a long-standing problem in image processing and computer vision. While technical quality assessment deals with measuring pixel-level degradations such as noise, blur, compression artifacts, etc., aesthetic assessment captures semantic level characteristics associated with emotions and beauty in images. Recently, deep
convolutional neural networks
(CNNs) trained with human-labelled data have been used to
address the subjective nature of image quality
for specific classes of images, such as landscapes. However, these approaches can be limited in their scope, as they typically categorize images to two classes of low and high quality. Our proposed method predicts the distribution of ratings. This leads to a more accurate quality prediction with higher correlation to the ground truth ratings, and is applicable to general images.
In “
NIMA: Neural Image Assessment
” we introduce a deep CNN that is trained to predict which images a typical user would rate as looking good (technically) or attractive (aesthetically). NIMA relies on the success of state-of-the-art deep
object recognition
networks, building on their ability to understand general categories of objects despite many variations. Our proposed network can be used to not only score images reliably and with high correlation to human perception, but also it is useful for a variety of labor intensive and subjective tasks such as intelligent photo editing, optimizing visual quality for increased user engagement, or minimizing perceived visual errors in an imaging pipeline.
Background
In general, image quality assessment can be categorized into full-reference and no-reference approaches. If a reference “ideal” image is available, image quality metrics such as
PSNR
,
SSIM
, etc. have been developed. When a reference image is not available, “blind” (or no-reference) approaches rely on statistical models to predict image quality. The main goal of both approaches is to predict a quality score that correlates well with human perception. In a deep CNN approach to image quality assessment, weights are initialized by training on object classification related datasets (e.g.
ImageNet
), and then fine-tuned on annotated data for perceptual quality assessment tasks.
NIMA
Typical aesthetic prediction methods categorize images as low/high quality. This is despite the fact that each image in the training data is associated to a histogram of human ratings, rather than a single binary score. A histogram of ratings is an indicator of overall quality of an image, as well as agreements among raters. In our approach, instead of classifying images a low/high score or regressing to the mean score, the NIMA model produces a distribution of ratings for any given image — on a scale of 1 to 10, NIMA assigns likelihoods to each of the possible scores. This is more directly in line with how training data is typically captured, and it turns out to be a better predictor of human preferences when measured against other approaches (more details are available in our
paper
).
Various functions of the NIMA vector score (such as the mean) can then be used to rank photos aesthetically. Some test photos from the large-scale database for Aesthetic Visual Analysis (
AVA
) dataset, as ranked by NIMA, are shown below. Each AVA photo is scored by an average of 200 people in response to
photography contests
. After training, the aesthetic ranking of these photos by NIMA closely matches the mean scores given by human raters. We find that NIMA performs equally well on other datasets, with predicted quality scores close to human ratings.
Ranking some examples labelled with the “landscape” tag from
AVA
dataset using NIMA. Predicted NIMA (and ground truth) scores are shown below each image.
NIMA scores can also be used to compare the quality of images of the same subject which may have been distorted in various ways. Images shown in the following example are part of the
TID2013
test set, which contain various types and levels of distortions.
Ranking some examples from
TID2013
dataset using NIMA. Predicted NIMA scores are shown below each image.
Perceptual Image Enhancement
As we’ve shown in another recent
paper
, quality and aesthetic scores can also be used to perceptually tune image enhancement operators. In other words, maximizing NIMA score as part of a loss function can increase the likelihood of enhancing perceptual quality of an image. The following example shows that NIMA can be used as a training loss to tune a tone enhancement algorithm. We observed that the baseline aesthetic ratings can be improved by contrast adjustments directed by the NIMA score. Consequently, our model is able to guide a deep CNN filter to find aesthetically near-optimal settings of its parameters, such as brightness, highlights and shadows.
NIMA can be used as a training loss to enhance images. In this example, local tone and contrast of images is enhanced by training a deep CNN with NIMA as its loss. Test images are obtained from the
MIT-Adobe FiveK dataset
.
Looking Ahead
Our work on NIMA suggests that quality assessment models based on machine learning may be capable of a wide range of useful functions. For instance, we may enable users to easily find the best pictures among many; or to even enable improved picture-taking with real-time feedback to the user. On the post-processing side, these models may be used to guide enhancement operators to produce perceptually superior results. In a direct sense, the NIMA network (and others like it) can act as reasonable, though imperfect, proxies for human taste in photos and possibly videos. We’re excited to share these results, though we know that the quest to do better in understanding what quality and aesthetics mean is an ongoing challenge — one that will involve continuing retraining and testing of our models.
Labels
accessibility
ACL
ACM
Acoustic Modeling
Adaptive Data Analysis
ads
adsense
adwords
Africa
AI
AI for Social Good
Algorithms
Android
Android Wear
API
App Engine
App Inventor
April Fools
Art
Audio
Augmented Reality
Australia
Automatic Speech Recognition
AutoML
Awards
BigQuery
Cantonese
Chemistry
China
Chrome
Cloud Computing
Collaboration
Compression
Computational Imaging
Computational Photography
Computer Science
Computer Vision
conference
conferences
Conservation
correlate
Course Builder
crowd-sourcing
CVPR
Data Center
Data Discovery
data science
datasets
Deep Learning
DeepDream
DeepMind
distributed systems
Diversity
Earth Engine
economics
Education
Electronic Commerce and Algorithms
electronics
EMEA
EMNLP
Encryption
entities
Entity Salience
Environment
Europe
Exacycle
Expander
Faculty Institute
Faculty Summit
Flu Trends
Fusion Tables
gamification
Gboard
Gmail
Google Accelerated Science
Google Books
Google Brain
Google Cloud Platform
Google Docs
Google Drive
Google Genomics
Google Maps
Google Photos
Google Play Apps
Google Science Fair
Google Sheets
Google Translate
Google Trips
Google Voice Search
Google+
Government
grants
Graph
Graph Mining
Hardware
HCI
Health
High Dynamic Range Imaging
ICCV
ICLR
ICML
ICSE
Image Annotation
Image Classification
Image Processing
Inbox
India
Information Retrieval
internationalization
Internet of Things
Interspeech
IPython
Journalism
jsm
jsm2011
K-12
Kaggle
KDD
Keyboard Input
Klingon
Korean
Labs
Linear Optimization
localization
Low-Light Photography
Machine Hearing
Machine Intelligence
Machine Learning
Machine Perception
Machine Translation
Magenta
MapReduce
market algorithms
Market Research
Mixed Reality
ML
ML Fairness
MOOC
Moore's Law
Multimodal Learning
NAACL
Natural Language Processing
Natural Language Understanding
Network Management
Networks
Neural Networks
NeurIPS
Nexus
Ngram
NIPS
NLP
On-device Learning
open source
operating systems
Optical Character Recognition
optimization
osdi
osdi10
patents
Peer Review
ph.d. fellowship
PhD Fellowship
PhotoScan
Physics
PiLab
Pixel
Policy
Professional Development
Proposals
Public Data Explorer
publication
Publications
Quantum AI
Quantum Computing
Recommender Systems
Reinforcement Learning
renewable energy
Research
Research Awards
resource optimization
Robotics
schema.org
Search
search ads
Security and Privacy
Self-Supervised Learning
Semantic Models
Semi-supervised Learning
SIGCOMM
SIGMOD
Site Reliability Engineering
Social Networks
Software
Sound Search
Speech
Speech Recognition
statistics
Structured Data
Style Transfer
Supervised Learning
Systems
TensorBoard
TensorFlow
TPU
Translate
trends
TTS
TV
UI
University Relations
UNIX
Unsupervised Learning
User Experience
video
Video Analysis
Virtual Reality
Vision Research
Visiting Faculty
Visualization
VLDB
Voice Search
Wiki
wikipedia
WWW
Year in Review
YouTube
Archive
2021
Apr
Mar
Feb
Jan
2020
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2019
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2018
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2017
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2016
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2015
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2014
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2013
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2012
Dec
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2011
Dec
Nov
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2010
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2009
Dec
Nov
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2008
Dec
Nov
Oct
Sep
Jul
May
Apr
Mar
Feb
2007
Oct
Sep
Aug
Jul
Jun
Feb
2006
Dec
Nov
Sep
Aug
Jul
Jun
Apr
Mar
Feb
Feed
Follow @googleai
Give us feedback in our
Product Forums
.