Blog
The latest news from Google AI
New Solutions for Quantum Gravity with TensorFlow
Friday, November 15, 2019
Posted by Thomas Fischbacher, Researcher in Compression, Google Research, Zürich
Recent strides in machine learning (ML) research have led to the development of tools useful for research problems well beyond the realm for which they were designed. The value of these tools when applied to topics ranging from
teaching robots how to throw
to predicting the
olfactory properties of molecules
is now beginning to be realized. Inspired by advances such as these, we undertook the challenge of applying
TensorFlow
, a computing platform normally used for ML, to advance the understanding of fundamental physics.
Perhaps the biggest open problem in fundamental theoretical physics may be that our current understanding of
quantum mechanics
only includes three of the four fundamental forces — the
electromagnetic
,
strong
, and
weak
forces. There is currently no complete quantum theory that also includes the force of
gravitation
, while still matching experimental observations, i.e., an accurate model of
quantum gravity
.
One promising approach to a unified model that includes quantum gravity, which has survived many mathematical consistency checks, is called
M-Theory
, or "
The Theory formerly known as Strings,”
introduced in 1995 by
Edward Witten
. In the everyday world, we all experience four dimensions—three spatial dimensions (
x
,
y
, and
z
), plus time (
t
). M-Theory predicts that, at very short lengths, the Universe is described, instead, by eleven dimensions. But, as one can imagine, establishing the connection between the four-dimensional world that we observe and the 11-dimensional world predicted by M-theory is exceedingly difficult to solve analytically. In fact, it might require analytic manipulation of equations having more terms than there are electrons in the Universe.
This summer, we published an
article
in the
Journal of High Energy Physics
where we introduced novel ways to address such problems through creative use of ML technology. Using simplifications enabled by TensorFlow, we managed to bring the total number of known (stable or unstable) equilibrium solutions for one particular type of M-Theory spacetime geometries
to 194
, including a new and
tachyon-free
four-dimensional model universe. The geometries that we studied are special in that they are still (barely) accessible with exact calculations that do not require neglecting potentially important terms. We have also released a short instructive
Google colab
as well as a more powerful
Python library
for use in related research.
Applying TensorFlow to M-Theory
This work is predicated on a key observation that a mixed numerical and analytic approach can be more powerful than a purely analytical method. Instead of attempting to find analytic solutions with brute force, we use a numerical approach that leverages TensorFlow for the initial search for solutions to the model. This then yields hypotheses on which specific combinations can be tested and analyzed with stringent mathematical methods, ultimately proving the actual existence of a conjectured solution. This represents a novel methodology for making further progress in theoretical physics.
Conclusion
We hope that these results will be an important step in interpreting M-theory, and demonstrate how the research community can use new ML tools, such as TensorFlow, to approach other similarly complex problems. We are already applying the newly discovered methods in further theoretical physics research.
Acknowledgements
This research was conducted by Iulia M. Comşa, Moritz Firsching, and Thomas Fischbacher. Additional thanks go to Jyrki Alakuijala, Rahul Sukthankar, and Jay Yagnik for encouragement and support.
Labels
2018
accessibility
ACL
ACM
Acoustic Modeling
Adaptive Data Analysis
ads
adsense
adwords
Africa
AI
AI for Social Good
Algorithms
Android
Android Wear
API
App Engine
App Inventor
April Fools
Art
Audio
Augmented Reality
Australia
Automatic Speech Recognition
AutoML
Awards
BigQuery
Cantonese
Chemistry
China
Chrome
Cloud Computing
Collaboration
Compression
Computational Imaging
Computational Photography
Computer Science
Computer Vision
conference
conferences
Conservation
correlate
Course Builder
crowd-sourcing
CVPR
Data Center
Data Discovery
data science
datasets
Deep Learning
DeepDream
DeepMind
distributed systems
Diversity
Earth Engine
economics
Education
Electronic Commerce and Algorithms
electronics
EMEA
EMNLP
Encryption
entities
Entity Salience
Environment
Europe
Exacycle
Expander
Faculty Institute
Faculty Summit
Flu Trends
Fusion Tables
gamification
Gboard
Gmail
Google Accelerated Science
Google Books
Google Brain
Google Cloud Platform
Google Docs
Google Drive
Google Genomics
Google Maps
Google Photos
Google Play Apps
Google Science Fair
Google Sheets
Google Translate
Google Trips
Google Voice Search
Google+
Government
grants
Graph
Graph Mining
Hardware
HCI
Health
High Dynamic Range Imaging
ICCV
ICLR
ICML
ICSE
Image Annotation
Image Classification
Image Processing
Inbox
India
Information Retrieval
internationalization
Internet of Things
Interspeech
IPython
Journalism
jsm
jsm2011
K-12
Kaggle
KDD
Keyboard Input
Klingon
Korean
Labs
Linear Optimization
localization
Low-Light Photography
Machine Hearing
Machine Intelligence
Machine Learning
Machine Perception
Machine Translation
Magenta
MapReduce
market algorithms
Market Research
Mixed Reality
ML
ML Fairness
MOOC
Moore's Law
Multimodal Learning
NAACL
Natural Language Processing
Natural Language Understanding
Network Management
Networks
Neural Networks
NeurIPS
Nexus
Ngram
NIPS
NLP
On-device Learning
open source
operating systems
Optical Character Recognition
optimization
osdi
osdi10
patents
Peer Review
ph.d. fellowship
PhD Fellowship
PhotoScan
Physics
PiLab
Pixel
Policy
Professional Development
Proposals
Public Data Explorer
publication
Publications
Quantum AI
Quantum Computing
Recommender Systems
Reinforcement Learning
renewable energy
Research
Research Awards
resource optimization
Robotics
schema.org
Search
search ads
Security and Privacy
Self-Supervised Learning
Semantic Models
Semi-supervised Learning
SIGCOMM
SIGMOD
Site Reliability Engineering
Social Networks
Software
Sound Search
Speech
Speech Recognition
statistics
Structured Data
Style Transfer
Supervised Learning
Systems
TensorBoard
TensorFlow
TPU
Translate
trends
TTS
TV
UI
University Relations
UNIX
Unsupervised Learning
User Experience
video
Video Analysis
Virtual Reality
Vision Research
Visiting Faculty
Visualization
VLDB
Voice Search
Wiki
wikipedia
WWW
Year in Review
YouTube
Archive
2019
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2018
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2017
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2016
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2015
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2014
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2013
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2012
Dec
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2011
Dec
Nov
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2010
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2009
Dec
Nov
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2008
Dec
Nov
Oct
Sep
Jul
May
Apr
Mar
Feb
2007
Oct
Sep
Aug
Jul
Jun
Feb
2006
Dec
Nov
Sep
Aug
Jul
Jun
Apr
Mar
Feb
Feed
Follow @googleai
Give us feedback in our
Product Forums
.