Blog
The latest from Google Research
Explore Images with Google Image Swirl
Monday, November 23, 2009
Posted by Yushi Jing and Henry Rowley, Google Research
Earlier this week, we
announced
the Labs launch of Google Image Swirl, an experimental search tool that organizes image-search results. We hope to take this opportunity to explain some of the research underlying this feature, and why it is an important area of focus for computer vision research at Google.
As the Web becomes more "visual," it is important for Google to go beyond traditional text and hyperlink analysis to unlock the information stored in the image pixels. If our search algorithms can understand the content of images and organize search results accordingly, we can provide users with a more engaging and useful image-search experience.
Google Image Swirl represents a concrete step towards reaching that goal. It looks at the pixel values of the top search results and organizes and presents them in visually distinctive groups. For example, in ambiguous queries such as "jaguar," Image Swirl separates the top search results into categories such as jaguar the animal and jaguar the brand of car. The top-level groups are further divided into collections of subgroups, allowing users to explore a broad set of visual concepts associated with the query, such as the front view of a Jaguar car or Eiffel Tower at night or from a distance. This is a distinct departure from the
way images are ranked
by the Google Similar Images, which excels at finding images very visually similar to the query image.
No matter how much work goes into engineering image and text features to represent the content of images, there will always be errors and inconsistencies. Sometimes two images share many visual or text features, but have little real-world connection. In other cases, objects that look similar to the human eye may appear drastically different to computer vision algorithms. Most difficult of all, the system has to work at Web Scale -- it must cover a large fraction of query traffic, and handle ambiguities and inconsistencies in the quality of information extracted from Web images.
In Google Image Swirl, we address this set of challenges by organizing all available information about an image set into a pairwise similarity graph, and applying novel graph-analysis algorithms to discover higher-order similarity and category information from this graph. Given the high dimensionality of image features and the noise in the data, it can be difficult to train a monolithic categorization engine that can generalize across all queries. In contrast, image similarities need only be defined for similar enough objects and trained with limited sets of data. Also, invariance to certain transformations or typical intra-class variation can be built into the perceptual similarity function. Different features or similarity functions may be selected, or learned, for different types of queries or image contents. Given a robust set of similarity functions, one can generate a graph (nodes are images and edges are similarity values) and apply graph analysis algorithms to infer similarities and categorical relationships that are not immediately obvious. In this work, we combined multiple sources of similarity such as those used in
Google Similar Images
,
landmark recognition
,
Picasa's face recognition
, anchor text similarity, and category-instance relationships between keywords similar to that in
WordNet
. It is a continuation of our
prior effort
[
paper
] to rank images based on visual similarity.
As with any practical application of computer vision techniques, there are a number of ad hoc details which are critical to the success of the system but are scientifically less interesting. One important direction of our future work will be to generalize some of the heuristics present in the system to make them more robust, while at the same time making the algorithm easier to analyze and evaluate against existing state-of-the-art methods. We hope that this work will lead to further research in the area of content-based image organization and look forward to your feedback.
UPDATE: Due to the shutdown of Google Labs, this service is longer active.
Labels
accessibility
ACL
ACM
Acoustic Modeling
Adaptive Data Analysis
ads
adsense
adwords
Africa
AI
AI for Social Good
Algorithms
Android
Android Wear
API
App Engine
App Inventor
April Fools
Art
Audio
Augmented Reality
Australia
Automatic Speech Recognition
AutoML
Awards
BigQuery
Cantonese
Chemistry
China
Chrome
Cloud Computing
Collaboration
Compression
Computational Imaging
Computational Photography
Computer Science
Computer Vision
conference
conferences
Conservation
correlate
Course Builder
crowd-sourcing
CVPR
Data Center
Data Discovery
data science
datasets
Deep Learning
DeepDream
DeepMind
distributed systems
Diversity
Earth Engine
economics
Education
Electronic Commerce and Algorithms
electronics
EMEA
EMNLP
Encryption
entities
Entity Salience
Environment
Europe
Exacycle
Expander
Faculty Institute
Faculty Summit
Flu Trends
Fusion Tables
gamification
Gboard
Gmail
Google Accelerated Science
Google Books
Google Brain
Google Cloud Platform
Google Docs
Google Drive
Google Genomics
Google Maps
Google Photos
Google Play Apps
Google Science Fair
Google Sheets
Google Translate
Google Trips
Google Voice Search
Google+
Government
grants
Graph
Graph Mining
Hardware
HCI
Health
High Dynamic Range Imaging
ICCV
ICLR
ICML
ICSE
Image Annotation
Image Classification
Image Processing
Inbox
India
Information Retrieval
internationalization
Internet of Things
Interspeech
IPython
Journalism
jsm
jsm2011
K-12
Kaggle
KDD
Keyboard Input
Klingon
Korean
Labs
Linear Optimization
localization
Low-Light Photography
Machine Hearing
Machine Intelligence
Machine Learning
Machine Perception
Machine Translation
Magenta
MapReduce
market algorithms
Market Research
materials science
Mixed Reality
ML
ML Fairness
MOOC
Moore's Law
Multimodal Learning
NAACL
Natural Language Processing
Natural Language Understanding
Network Management
Networks
Neural Networks
NeurIPS
Nexus
Ngram
NIPS
NLP
On-device Learning
open source
operating systems
Optical Character Recognition
optimization
osdi
osdi10
patents
Peer Review
ph.d. fellowship
PhD Fellowship
PhotoScan
Physics
PiLab
Pixel
Policy
Professional Development
Proposals
Public Data Explorer
publication
Publications
Quantum AI
Quantum Computing
Recommender Systems
Reinforcement Learning
renewable energy
Research
Research Awards
resource optimization
Responsible AI
Robotics
schema.org
Search
search ads
Security and Privacy
Self-Supervised Learning
Semantic Models
Semi-supervised Learning
SIGCOMM
SIGMOD
Site Reliability Engineering
Social Networks
Software
Sound Search
Speech
Speech Recognition
statistics
Structured Data
Style Transfer
Supervised Learning
Systems
TensorBoard
TensorFlow
TPU
Translate
trends
TTS
TV
UI
University Relations
UNIX
Unsupervised Learning
User Experience
video
Video Analysis
Virtual Reality
Vision Research
Visiting Faculty
Visualization
VLDB
Voice Search
Wiki
wikipedia
WWW
Year in Review
YouTube
Archive
2022
Jun
May
Apr
Mar
Feb
Jan
2021
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2020
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2019
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2018
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2017
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2016
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2015
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2014
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2013
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2012
Dec
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2011
Dec
Nov
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2010
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2009
Dec
Nov
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2008
Dec
Nov
Oct
Sep
Jul
May
Apr
Mar
Feb
2007
Oct
Sep
Aug
Jul
Jun
Feb
2006
Dec
Nov
Sep
Aug
Jul
Jun
Apr
Mar
Feb
Feed
Follow @googleai
Give us feedback in our
Product Forums
.