Blog
The latest from Google Research
Google Launches Cantonese Voice Search in Hong Kong
Thursday, December 2, 2010
Posted by Posted by Yun-hsuan Sung (宋雲軒) and Martin Jansche, Google Research
On November 30th 2010, Google launched Cantonese Voice Search in Hong Kong. Google Search by Voice has been available in a growing number of languages since we launched our first US English system in 2008. In addition to US English, we already support Mandarin for Mainland China, Mandarin for Taiwan, Japanese, Korean, French, Italian, German, Spanish, Turkish, Russian, Czech, Polish, Brazilian Portuguese, Dutch, Afrikaans, and Zulu, along with special recognizers for English spoken with British, Indian, Australian, and South African accents.
Cantonese is widely spoken in Hong Kong, where it is written using traditional Chinese characters, similar to those used in Taiwan. Chinese script is much harder to type than the Latin alphabet, especially on mobile devices with small or virtual keyboards. People in Hong Kong typically use either “
Cangjie
” (
倉頡
) or “Handwriting” (手寫輸入) input methods. Cangjie (倉頡) has a steep learning curve and requires users to break the Chinese characters down into sequences of graphical components. The Handwriting (手寫輸入) method is easier to learn, but slow to use. Neither is an ideal input method for people in Hong Kong trying to use Google Search on their mobile phones.
Speaking is generally much faster and more natural than typing. Moreover, some Chinese characters – like “滘” in “
滘西州
” (
Kau Sai Chau
) and “砵” in “
砵典乍街
” (
Pottinger Street
) – are so rarely used that people often know only the pronunciation, and not how to write them. Our Cantonese Voice Search begins to address these situations by allowing Hong Kong users to speak queries instead of entering Chinese characters on mobile devices. We believe our development of Cantonese Voice Search is a step towards solving the text input challenge for devices with small or virtual keyboards for users in Hong Kong.
There were several challenges in developing Cantonese Voice Search, some unique to Cantonese, some typical of Asian languages and some universal to all languages. Here are some examples of problems that stood out:
Data Collection
: In contrast to English, there are few existing Cantonese datasets that can be used to train a recognition system. Building a recognition system requires both audio and text data so it can recognize both the sounds and the words. For audio data, our efficient
DataHound
collection technique uses smartphones to record and upload large numbers of audio samples from local Cantonese-speaking volunteers. For text data, we sample from anonymized search query logs from http://www.google.com.hk to obtain the large amounts of data needed to train language models.
Chinese Word Boundaries
: Chinese writing doesn’t use spaces to indicate word boundaries. To limit the size of the vocabulary for our speech recognizer and to simplify lexicon development, we use characters, rather than words, as the basic units in our system and allow multiple pronunciations for each character.
Mixing of Chinese Characters and English Words
: We found that Hong Kong users mix more English into their queries than users in Mainland China and Taiwan. To build a lexicon for both Chinese characters and English words, we map English words to a sequence of Cantonese pronunciation units.
Tone Issues
: Linguists disagree on the best count of the number of tones in Cantonese – some say 6, some say 7, or 9, or 10. In any case, it’s a lot. We decided to model tone-plus-vowel combinations as single units. In order to limit the complexity of the resulting model, some rarely-used tone-vowel combinations are merged into single models.
Transliteration
: We found that some users use English words while others use the Cantonese transliteration (e.g.,: “
Jordan
” vs. “
佐敦
”). This makes it challenging to develop and evaluate the system, since it’s often impossible for the recognizer to distinguish between an English word and its Cantonese transliteration. During development we use a metric that simply checks whether the correct search results are returned.
Different Accents and Noisy Environment
: People speak in different styles with different accents. They use our systems in a variety of environments, including offices, subways, and shopping malls. To make our system work in all these different conditions, we train it using data collected from many different volunteers in many different environments.
Cantonese is Google’s third spoken language for Voice Search in the Chinese linguistic family, after Mandarin for Mainland China and Mandarin for Taiwan. We plan to continue to use our data collection and language modeling technologies to help speakers of Chinese languages easily input text and look up information.
Labels
accessibility
ACL
ACM
Acoustic Modeling
Adaptive Data Analysis
ads
adsense
adwords
Africa
AI
AI for Social Good
Algorithms
Android
Android Wear
API
App Engine
App Inventor
April Fools
Art
Audio
Augmented Reality
Australia
Automatic Speech Recognition
AutoML
Awards
BigQuery
Cantonese
Chemistry
China
Chrome
Cloud Computing
Collaboration
Compression
Computational Imaging
Computational Photography
Computer Science
Computer Vision
conference
conferences
Conservation
correlate
Course Builder
crowd-sourcing
CVPR
Data Center
Data Discovery
data science
datasets
Deep Learning
DeepDream
DeepMind
distributed systems
Diversity
Earth Engine
economics
Education
Electronic Commerce and Algorithms
electronics
EMEA
EMNLP
Encryption
entities
Entity Salience
Environment
Europe
Exacycle
Expander
Faculty Institute
Faculty Summit
Flu Trends
Fusion Tables
gamification
Gboard
Gmail
Google Accelerated Science
Google Books
Google Brain
Google Cloud Platform
Google Docs
Google Drive
Google Genomics
Google Maps
Google Photos
Google Play Apps
Google Science Fair
Google Sheets
Google Translate
Google Trips
Google Voice Search
Google+
Government
grants
Graph
Graph Mining
Hardware
HCI
Health
High Dynamic Range Imaging
ICCV
ICLR
ICML
ICSE
Image Annotation
Image Classification
Image Processing
Inbox
India
Information Retrieval
internationalization
Internet of Things
Interspeech
IPython
Journalism
jsm
jsm2011
K-12
Kaggle
KDD
Keyboard Input
Klingon
Korean
Labs
Linear Optimization
localization
Low-Light Photography
Machine Hearing
Machine Intelligence
Machine Learning
Machine Perception
Machine Translation
Magenta
MapReduce
market algorithms
Market Research
materials science
Mixed Reality
ML
ML Fairness
MOOC
Moore's Law
Multimodal Learning
NAACL
Natural Language Processing
Natural Language Understanding
Network Management
Networks
Neural Networks
NeurIPS
Nexus
Ngram
NIPS
NLP
On-device Learning
open source
operating systems
Optical Character Recognition
optimization
osdi
osdi10
patents
Peer Review
ph.d. fellowship
PhD Fellowship
PhotoScan
Physics
PiLab
Pixel
Policy
Professional Development
Proposals
Public Data Explorer
publication
Publications
Quantum AI
Quantum Computing
Recommender Systems
Reinforcement Learning
renewable energy
Research
Research Awards
resource optimization
Responsible AI
Robotics
schema.org
Search
search ads
Security and Privacy
Self-Supervised Learning
Semantic Models
Semi-supervised Learning
SIGCOMM
SIGMOD
Site Reliability Engineering
Social Networks
Software
Sound Search
Speech
Speech Recognition
statistics
Structured Data
Style Transfer
Supervised Learning
Systems
TensorBoard
TensorFlow
TPU
Translate
trends
TTS
TV
UI
University Relations
UNIX
Unsupervised Learning
User Experience
video
Video Analysis
Virtual Reality
Vision Research
Visiting Faculty
Visualization
VLDB
Voice Search
Wiki
wikipedia
WWW
Year in Review
YouTube
Archive
2022
Jun
May
Apr
Mar
Feb
Jan
2021
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2020
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2019
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2018
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2017
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2016
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2015
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2014
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2013
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2012
Dec
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2011
Dec
Nov
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2010
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2009
Dec
Nov
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2008
Dec
Nov
Oct
Sep
Jul
May
Apr
Mar
Feb
2007
Oct
Sep
Aug
Jul
Jun
Feb
2006
Dec
Nov
Sep
Aug
Jul
Jun
Apr
Mar
Feb
Feed
Follow @googleai
Give us feedback in our
Product Forums
.