Blog
The latest from Google Research
Quick Access in Drive: Using Machine Learning to Save You Time
Friday, March 10, 2017
Posted by Sandeep Tata, Software Engineer, Google Research
At Google, we research cutting-edge machine learning (ML) techniques that allow us to provide products and services aimed at helping you focus on what’s important. From providing
language translations
to
understanding images
to
helping you respond to emails
, it is our goal to help you save time, making life — and work — a little more convenient.
Recent
studies
have shown that finding information is second only to managing email as a drain on workplace productivity. To help address this, last year we launched
Quick Access
, a feature in Google Drive that uses ML to surface the most relevant documents as soon as you visit the Google Drive home screen. Originally available only for G Suite customers on Android, Quick Access is now available for anyone who uses Google Drive (on the
Web
,
Android
, and
iOS
), saving you from having to enter a search or to browse through your folders. Our metrics show that Quick Access takes you to the documents you need in half the time compared to manually navigating or searching.
Quick Access uses deep neural networks to determine patterns from various signals, such as activity in Drive, meetings on your Calendar, and more, to anticipate your needs and show the appropriate documents on the Drive home screen. Traditional ML approaches require domain experts to derive complex features from data, which are in turn used to train the model. For Quick Access, however, we constructed thousands of simple features from the various signals above (for instance, the timestamps of the last 20 edit events on a document would constitute 20 simple input features), and combined them with the power of deep neural networks to learn from the aggregated activity of our users. By using deep neural networks we were able to develop accurate predictive models with simpler features and less feature engineering effort.
Quick Access suggestions on the top row in Drive on a desktop browser.
The model computes a relevance score for each of the documents in Drive and the top scoring documents are presented on the home screen. For example, if you have a Calendar entry for a meeting with a coworker in the next few minutes, Quick Access might predict that the presentation you’ve been working on with that coworker is more relevant compared to your monthly budget spreadsheet or the photos you uploaded last week. If you’ve been updating a spreadsheet every weekend, then next weekend, Quick Access will likely display that spreadsheet ahead of the other documents you viewed during the week.
We hope Quick Access helps you use Drive more effectively, allowing you to save time and be more productive. To learn more, watch
this talk from Google Cloud Next ‘17
that dives into more details on the ML behind Quick Access.
Acknowledgements
Thanks to Alexandrin Popescul and Marc Najork for contributions that made this application of machine learning technology possible. This work was in close collaboration with several engineers on the Drive team including Sean Abraham, Brian Calaci, Mike Colagrosso, Mike Procopio, Jesse Sterr, and Timothy Vis.
Labels
accessibility
ACL
ACM
Acoustic Modeling
Adaptive Data Analysis
ads
adsense
adwords
Africa
AI
AI for Social Good
Algorithms
Android
Android Wear
API
App Engine
App Inventor
April Fools
Art
Audio
Augmented Reality
Australia
Automatic Speech Recognition
AutoML
Awards
BigQuery
Cantonese
Chemistry
China
Chrome
Cloud Computing
Collaboration
Compression
Computational Imaging
Computational Photography
Computer Science
Computer Vision
conference
conferences
Conservation
correlate
Course Builder
crowd-sourcing
CVPR
Data Center
Data Discovery
data science
datasets
Deep Learning
DeepDream
DeepMind
distributed systems
Diversity
Earth Engine
economics
Education
Electronic Commerce and Algorithms
electronics
EMEA
EMNLP
Encryption
entities
Entity Salience
Environment
Europe
Exacycle
Expander
Faculty Institute
Faculty Summit
Flu Trends
Fusion Tables
gamification
Gboard
Gmail
Google Accelerated Science
Google Books
Google Brain
Google Cloud Platform
Google Docs
Google Drive
Google Genomics
Google Maps
Google Photos
Google Play Apps
Google Science Fair
Google Sheets
Google Translate
Google Trips
Google Voice Search
Google+
Government
grants
Graph
Graph Mining
Hardware
HCI
Health
High Dynamic Range Imaging
ICCV
ICLR
ICML
ICSE
Image Annotation
Image Classification
Image Processing
Inbox
India
Information Retrieval
internationalization
Internet of Things
Interspeech
IPython
Journalism
jsm
jsm2011
K-12
Kaggle
KDD
Keyboard Input
Klingon
Korean
Labs
Linear Optimization
localization
Low-Light Photography
Machine Hearing
Machine Intelligence
Machine Learning
Machine Perception
Machine Translation
Magenta
MapReduce
market algorithms
Market Research
materials science
Mixed Reality
ML
ML Fairness
MOOC
Moore's Law
Multimodal Learning
NAACL
Natural Language Processing
Natural Language Understanding
Network Management
Networks
Neural Networks
NeurIPS
Nexus
Ngram
NIPS
NLP
On-device Learning
open source
operating systems
Optical Character Recognition
optimization
osdi
osdi10
patents
Peer Review
ph.d. fellowship
PhD Fellowship
PhotoScan
Physics
PiLab
Pixel
Policy
Professional Development
Proposals
Public Data Explorer
publication
Publications
Quantum AI
Quantum Computing
Recommender Systems
Reinforcement Learning
renewable energy
Research
Research Awards
resource optimization
Responsible AI
Robotics
schema.org
Search
search ads
Security and Privacy
Self-Supervised Learning
Semantic Models
Semi-supervised Learning
SIGCOMM
SIGMOD
Site Reliability Engineering
Social Networks
Software
Sound Search
Speech
Speech Recognition
statistics
Structured Data
Style Transfer
Supervised Learning
Systems
TensorBoard
TensorFlow
TPU
Translate
trends
TTS
TV
UI
University Relations
UNIX
Unsupervised Learning
User Experience
video
Video Analysis
Virtual Reality
Vision Research
Visiting Faculty
Visualization
VLDB
Voice Search
Wiki
wikipedia
WWW
Year in Review
YouTube
Archive
2022
May
Apr
Mar
Feb
Jan
2021
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2020
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2019
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2018
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2017
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2016
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2015
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2014
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2013
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2012
Dec
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2011
Dec
Nov
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2010
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2009
Dec
Nov
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2008
Dec
Nov
Oct
Sep
Jul
May
Apr
Mar
Feb
2007
Oct
Sep
Aug
Jul
Jun
Feb
2006
Dec
Nov
Sep
Aug
Jul
Jun
Apr
Mar
Feb
Feed
Follow @googleai
Give us feedback in our
Product Forums
.