Blog
The latest from Google Research
Top Shot on Pixel 3
Thursday, December 20, 2018
Posted by Li Zhang and Wei (Alex) Hong, Software Engineers
Life is full of meaningful moments — from a child’s first step to an impromptu jump for joy — that one wishes could be preserved with a picture. However, because these moments are often unpredictable, missing that perfect shot is a frustrating problem that smartphone camera users face daily. Using our experience from developing
Google Clips
, we wondered if we could develop new techniques for the Pixel 3 camera that would allow everyone to capture the perfect shot every time.
Top Shot
is a new feature recently launched with
Pixel 3
that helps you to capture precious moments precisely and automatically at the press of the shutter button. Top Shot saves and analyzes the image frames before and after the shutter press on the device in real-time using computer vision techniques, and recommends several alternative high-quality
HDR+
photos.
Examples of Top Shot on Pixel 3. On the left, a better smiling shot is recommended. On the right, a better jump shot is recommended. The recommended images are high-quality HDR+ shots.
Capturing Multiple Moments
When a user opens the Pixel 3 Camera app, Top Shot is enabled by default, helping to capture the perfect moment by analyzing images taken both before and after the shutter press. Each image is analyzed for some qualitative features (e.g., whether the subject is smiling or not) in real-time and entirely on-device to preserve privacy and minimize latency. Each image is also associated with additional signals, such as
optical flow
of the image, exposure time, and gyro sensor data to form the input features used to score the frame quality.
When you press the shutter button, Top Shot captures up to 90 images from 1.5 seconds before and after the shutter press, selecting up to two alternative shots to save in high resolution — the original shutter frame and high-res alternatives for you to review (other lower-res frames can also be reviewed as desired). The shutter frame is processed and saved first. The best alternative shots are saved afterwards.
Google’s Visual Core
on Pixel 3 is used to process these top alternative shots as HDR+ images with a very small amount of extra latency, and are embedded into the file of the
Motion Photo
.
Top-level diagram of Top Shot capture.
Given Top Shot runs in the camera as a background process, it must have very low power consumption. As such, Top Shot uses a hardware-accelerated
MobileNet
-based
single shot detector
(SSD). The execution of such optimized models is also throttled by power and thermal limits.
Recognizing Top Moments
When we set out to understand how to enable people to capture the best moments with their camera, we focused on three key attributes: 1) functional qualities like lighting, 2) objective attributes (are the subject's eyes open? Are they smiling?), and 3) subjective qualities like emotional expressions. We designed a computer vision model to recognize these attributes while operating in a low-latency, on-device mode.
During our development process, we started with a vanilla MobileNet model and set out to optimize for Top Shot, arriving at a customized architecture that operated within our accuracy, latency and power tradeoff constraints. Our neural network design detects low-level visual attributes in early layers, like whether the subject is blurry, and then dedicates additional compute and parameters toward more complex objective attributes like whether the subject's eyes are open, and subjective attributes like whether there is an emotional expression of amusement or surprise. We trained our model using
knowledge distillation
over a large number of diverse face images using
quantization
during both training and inference.
We then adopted a layered
Generalized Additive Model
(GAM) to provide quality scores for faces and combine them into a weighted-average “frame faces” score. This model made it easy for us to interpret and identify the exact causes of success or failure, enabling rapid iteration to improve the quality and performance of our attributes model. The number of free parameters was on the order of dozens, so we could optimize these using Google's black box optimizer,
Vizier
, in tandem with any other parameters that affected selection quality.
Frame Scoring Model
While Top Shot prioritizes for face analysis, there are good moments in which faces are not the primary subject. To handle those use cases, we include the following additional scores in the overall frame quality score:
Subject motion saliency score
— the low-resolution optical flow between the current frame and the previous frame is estimated in ISP to determine if there is salient object motion in the scene.
Global motion blur score
— estimated from the camera motion and the exposure time. The camera motion is calculated from sensor data from the gyroscope and OIS (optical image stabilization).
“3A” scores
— the status of auto exposure, auto focus, and auto white balance, are also considered.
All the individual scores are used to train a model predicting an overall quality score, which matches the frame preference of human raters, to maximize end-to-end product quality.
End-to-End Quality and Fairness
Most of the above components are each evaluated for accuracy independently However, Top Shot presents requirements that are uniquely challenging since it’s running real-time in the Pixel Camera. Additionally, we needed to ensure that all these signals are combined in a system with favorable results. That means we need to gauge our predictions against what our users perceive as the “top shot.”
To test this, we collected data from hundreds of volunteers, along with their opinions of which frames (out of up to 90!) looked best. This donated dataset covers many typical use cases, e.g. portraits, selfies, actions, landscapes, etc.
Many of the 3-second clips provided by Top Shot had more than one good shot, so it was important for us to engineer our quality metrics to handle this. We used some modified versions of traditional
Precision and Recall
, some classic ranking metrics (such as
Mean Reciprocal Rank
), and a few others that were designed specifically for the Top Shot task as our objective. In addition to these metrics, we additionally investigated causes of image quality issues we saw during development, leading to improvements in avoiding blur, handling multiple faces better, and more. In doing so, we were able to steer the model towards a set of selections people were likely to rate highly.
Importantly, we tested the Top Shot system for fairness to make sure that our product can offer a consistent experience to a very wide range of users. We evaluated the accuracy of each signal used in Top Shot on several different subgroups of people (based on gender, age, ethnicity, etc), testing for accuracy of each signal across those subgroups.
Conclusion
Top Shot is just one example of how Google leverages optimized hardware and cutting-edge machine learning to provide useful tools and services. We hope you’ll find this feature useful, and we’re committed to further improving the capabilities of mobile phone photography!
Acknowledgements
This post reflects the work of a large group of Google engineers, research scientists, and others including: Ari Gilder, Aseem Agarwala, Brendan Jou, Chris Breithaupt, David Karam, Eric Penner, Farooq Ahmad, Henri Astre, Hillary Strickland, John Zhang, Marius Renn, Matt Bridges, Maxwell Collins, Navid Shiee, Ryan Gordon, Sarah Clinckemaillie, Shu Zhang, Vivek Kesarwani, Xuhui Jia, Yukun Zhu and Yuzo Watanabe.
Labels
accessibility
ACL
ACM
Acoustic Modeling
Adaptive Data Analysis
ads
adsense
adwords
Africa
AI
AI for Social Good
Algorithms
Android
Android Wear
API
App Engine
App Inventor
April Fools
Art
Audio
Augmented Reality
Australia
Automatic Speech Recognition
AutoML
Awards
BigQuery
Cantonese
Chemistry
China
Chrome
Cloud Computing
Collaboration
Compression
Computational Imaging
Computational Photography
Computer Science
Computer Vision
conference
conferences
Conservation
correlate
Course Builder
crowd-sourcing
CVPR
Data Center
Data Discovery
data science
datasets
Deep Learning
DeepDream
DeepMind
distributed systems
Diversity
Earth Engine
economics
Education
Electronic Commerce and Algorithms
electronics
EMEA
EMNLP
Encryption
entities
Entity Salience
Environment
Europe
Exacycle
Expander
Faculty Institute
Faculty Summit
Flu Trends
Fusion Tables
gamification
Gboard
Gmail
Google Accelerated Science
Google Books
Google Brain
Google Cloud Platform
Google Docs
Google Drive
Google Genomics
Google Maps
Google Photos
Google Play Apps
Google Science Fair
Google Sheets
Google Translate
Google Trips
Google Voice Search
Google+
Government
grants
Graph
Graph Mining
Hardware
HCI
Health
High Dynamic Range Imaging
ICCV
ICLR
ICML
ICSE
Image Annotation
Image Classification
Image Processing
Inbox
India
Information Retrieval
internationalization
Internet of Things
Interspeech
IPython
Journalism
jsm
jsm2011
K-12
Kaggle
KDD
Keyboard Input
Klingon
Korean
Labs
Linear Optimization
localization
Low-Light Photography
Machine Hearing
Machine Intelligence
Machine Learning
Machine Perception
Machine Translation
Magenta
MapReduce
market algorithms
Market Research
materials science
Mixed Reality
ML
ML Fairness
MOOC
Moore's Law
Multimodal Learning
NAACL
Natural Language Processing
Natural Language Understanding
Network Management
Networks
Neural Networks
NeurIPS
Nexus
Ngram
NIPS
NLP
On-device Learning
open source
operating systems
Optical Character Recognition
optimization
osdi
osdi10
patents
Peer Review
ph.d. fellowship
PhD Fellowship
PhotoScan
Physics
PiLab
Pixel
Policy
Professional Development
Proposals
Public Data Explorer
publication
Publications
Quantum AI
Quantum Computing
Recommender Systems
Reinforcement Learning
renewable energy
Research
Research Awards
resource optimization
Responsible AI
Robotics
schema.org
Search
search ads
Security and Privacy
Self-Supervised Learning
Semantic Models
Semi-supervised Learning
SIGCOMM
SIGMOD
Site Reliability Engineering
Social Networks
Software
Sound Search
Speech
Speech Recognition
statistics
Structured Data
Style Transfer
Supervised Learning
Systems
TensorBoard
TensorFlow
TPU
Translate
trends
TTS
TV
UI
University Relations
UNIX
Unsupervised Learning
User Experience
video
Video Analysis
Virtual Reality
Vision Research
Visiting Faculty
Visualization
VLDB
Voice Search
Wiki
wikipedia
WWW
Year in Review
YouTube
Archive
2022
May
Apr
Mar
Feb
Jan
2021
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2020
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2019
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2018
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2017
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2016
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2015
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2014
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2013
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2012
Dec
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2011
Dec
Nov
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2010
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2009
Dec
Nov
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2008
Dec
Nov
Oct
Sep
Jul
May
Apr
Mar
Feb
2007
Oct
Sep
Aug
Jul
Jun
Feb
2006
Dec
Nov
Sep
Aug
Jul
Jun
Apr
Mar
Feb
Feed
Follow @googleai
Give us feedback in our
Product Forums
.